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Abstract

Squamous cell carcinoma (SCC) is the most common cancer worldwide. The
treatment of locally advanced disease generally requires various combinations of
radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal
treatment, most of the patients relapse. Identification of molecules that sustain
cancer cell growth and survival has made molecular targeting a feasible therapeutic
strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family,
which is overexpressed in most of the malignancies including SCC and totally
absent in most of the normal tissues. This feature makes survivin an ideal target
for cancer therapy. It orchestrates several important mechanisms to support
cancer cell survival including inhibition of apoptosis and regulation of cell
division. Overexpression of survivin in tumors is also associated with poor
prognosis, aggressive tumor behavior, resistance to therapy, and high tumor
recurrence. Various strategies have been developed to target survivin expression
in cancer cells, and their effects on apoptosis induction and tumor growth
attenuation have been demonstrated. In this review, we discuss recent advances
in therapeutic potential of survivin in cancer treatment.
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Background

Squamous cell carcinoma represents one of the most common cancers worldwide. It is
a malignancy that arises from uncontrolled growth of epithelial cells [1], and normally
occur in the organs that covered with squamous epithelium [2]. Major types of SCC
include head and neck cancer (HNSCC), esophageal cancer (ESCC), non-melanoma
skin cancer, and non-small cell lung cancer (NSCLC) [2]. SCC is associated with
greater mortality and morbidity due to its highly invasive nature that often invades
neighboring tissues, and can metastasize distant organs [3, 4]. In advanced stages, SCC
treatment often requires complete excision of tumor using specialized surgical techniques
[5]. Unfortunately, the survival rate of SCC patients has not improved significantly over the
last couple of decades, even after substantial advances in cancer treatment strategies [6].

In recent times, molecular targets that are involved in the regulation of cell death or
viability pathways in cancer cell took a center stage in molecular cancer therapy re-
search [7]. Other than bcl-2 family proteins [8], a second gene family called IAP has
been identified, which regulates various important aspects of cell survival [9]. IAP
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family proteins are evolutionarily highly conserved, which exist from viruses to mamma-
lian cells [10]. These proteins target downstream steps of apoptosis by interfering in the
activation of pro- and effector caspases [11, 12]. The present article reviews the thera-
peutic potential of an IAP family protein survivin in cancer with special reference to SCC.

Survivin

Survivin is a unique member of the IAP family that is expressed in most human tumors,
but is barely detected in normal adult tissues [13, 14]. It is included in among the top five
tumor-specific genes [15]. Overexpression of survivin in tumors is generally associated
with poor prognosis and drug resistance [16, 17]. Nuclear expression of survivin has been
established as a good prognostic marker in several cancers [18, 19]. Down-regulation of
survivin induces cancer cell apoptosis, and suppresses tumor growth.

Survivin is the smallest member of the mammalian IAP family containing only a single
N-terminal baculovirus IAP repeat (BIR) domain combined with long C-terminal o -helix
coiled region [20]. In solution it is present in dimeric form. BIR domain plays a critical
role in anti-apoptotic functions of survivin, whereas the coiled domain helps survivin in
interacting with tubulin structures, and probably is involved in the regulation of cell div-
ision [21, 22]. A typical BIR domain consists of approximately 70 amino acids. The se-
quence and structure of BIR domain are evolutionarily highly conserved. For example,
TIAP of murine and deterin of Drosophila melanogaster fruit flies show similarity with
survivin [23]. Likewise, the genomes of Xenopus laevis, African clawed frog, Xenopus tro-
picalis, Western clawed frog, Danio rerio, zebra fish, fugu, puffer fish, and Oncorhynchus
mykiss rainbow trout contain two genes Sul and Su2 that are similar to survivin. The hu-
man survivin is a 16.5 kDa protein, which is encoded by BRIC5 gene and spans 14.7 kb at
the telomeric position of chromosome 17 [24, 25].

Survivin gene also shows alternative transcriptional splicing that forms several of its
isoforms [26]. These splice variants are formed with deletion and insertion of some of
the coding and noncoding sequences, which are not much different in length from sur-
vivin [27]. Survivin-2B transcript is formed due to retention of a part of intron 2, while
that of survivin-AEx-3 is formed by deletion of a part of exon 3. An insertion of additional
exon 3B was found in survivin-3B transcript that leads to a frameshift and premature ter-
mination of the protein [22, 28]. The sequence alterations in different isoforms cause
structural changes in the corresponding protein, consequently changing their ability to in-
hibit apoptosis. In case of survivin-2B, insertion of exon 2B at the site of essential BIR se-
quence reduces its anti-apoptotic function, whereas survivin-AEx-3 still retains the anti-
apoptotic activity despite having slight alteration in BIR domain due to removal of exon 3.
Different subcellular localizations are also observed within survivin isoforms. Survivin-
AEx-3 is predominately nuclear, whereas survivin and survivin-2B are primarily present in
cytoplasm [29]. Thus, the formation of different isoforms of survivin and their different
subcellular localizations provide diversity to its functions.

Functions of survivin
In cancer cells, survivin has two major functions; 1) regulation of mitosis by forming
chromosomal passenger complex (CPC) with other proteins, and 2) inhibition of apop-

tosis [30, 31]. As shown by embryonic lethality in mice with survivin locus disruption
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that it plays a critical in overall normal embryonic development [32]. In adults, survivin
is absent in most of the terminally differentiated tissues as opposed to it high re-

expression in malignant cells.

Role of survivin in cell division

Survivin plays an important role in the regulation of mitosis [30, 33]. It is expressed in
a cell cycle dependent manner as reported mostly in G2-M phase [34]. During mitosis
survivin interacts with tubulin and localizes to the mitotic spindle indicating its in-
volvement in the regulation of mitosis [35]. It is now very well documented that survi-
vin controls multiple facets of cell division in association with other proteins. It plays
an important role in centrosome functions [21], microtubule assembly during meta-
phase and anaphase [36, 37], and spindle checkpoints (Fig. 1). Depletion of survivin
causes defective cell division that involves activation of spindle checkpoints mediated
by tumor suppressor protein p53 due to an arrest of DNA synthesis [30, 38]. Survivin-
deficient cells frequently fail to complete both chromosome segregation and cytokinesis
during mitosis. In the absence of survivin, sister chromatids start separating normally
during anaphase, but often fail to move along with the main mass of segregating chro-
mosomes that ultimately leads to an abnormal chromatid separation. Cytokinesis is also
initiated normally, but in the absence of survivin it fails in late stages due to abnormal-
ity in spindle midzone and midbody microtubule formation [28, 39]. It has been dem-
onstrated that these abnormalities in chromosome segregation and cytokinesis can be
attributed to a defective CPC. Survivin forms a complex with Aurora B and inner
centromere protein (ICP or INCENP) i.e,, a characteristic of CPC [30, 35, 40]. This sur-
vivin/auroraB/ICP complex interacts with the central spindle midzone at the metaphase

and anaphase chromosome, where it plays a crucial role in chromosomal segregation
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Fig. 1 Role of survivin in cell cycle. In association with Aurora B and ICP, survivin forms a chromosomal
passenger complex that bind to their target sites including centromere, midplate and cleavage furrow,
where it regulates proper chromosome segregation and cytogenesis
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and cytokinesis [41] (Fig. 1). Aberrant mitosis and multi-nucleation has been observed in
survivin-knockout cells [40, 42, 43]. Similar functions of survivin or its homolog have also
been reported in other species. For example, in fission yeast, a survivin homolog Bir1P/
Cutl17P/Pbhlp forms a complex with Pic1P (an ICP homolog) and with replication initi-
ation factor Psf2P, which regulates chromosomal segregation during mitosis [41].

Role of survivin in apoptosis

Apoptosis can be triggered with the two major types of stimuli, external and internal.
The extrinsic apoptotic pathway initiates by the activation of death receptors (CD-95/
Fas and TNFa receptors) through external signals following activation of initiator
caspase-8 [35]. The intrinsic apoptotic pathway initiates due to intracellular signals that
act through mitochondria. In response to signals, mitochondria release cytochrome-c
(cyt-c) and Smac/DIABLO to form apoptosome for activating initiator caspase-9 [11].
Generally, mammalian IAPs inhibit apoptosis by direct or indirect inhibition of cas-
pases [44] (Fig. 2).

In mammalian cells, mitochondria elicit arrays of cell death regulators [45]. Survivin
is present abundantly in the inter-mitochondrial membrane space [46]. The mecha-
nism(s) of survivin localization in mitochondria is currently unknown. However, mo-
lecular chaperone heat shock protein 90 (Hsp90) is thought to participate in importing
many client proteins to mitochondria, and found to be associated with survivin and
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Fig. 2 Role of survivin in apoptosis. Apoptosis can be initiated by the death-receptor (extrinsic) pathway or
mitochondrial (intrinsic) pathway. Extrinsic pathway acts through caspase-8 and intrinsic pathway acts through
caspase-9, but both pathways converge to activate the effector caspases-3-7. Survivin largely interferes in
mitochondrial-mediated apoptotic pathway. Apoptosome complex formed in association of Cyt-c, Apaf-1 and
procaspase-9 in presence of dATP that leads to activation of procaspase-9. Survivin most probably blocks activation
of caspase-9 by inhibiting apoptosome formation. It may also inhibit initiator caspase-9 and effector caspases-3
directly. Smac/DIABLO is a proapoptotic protein that inhibits activity of IAPs. Survivin antagonize the activity of
Smac/DIABLO and may help in the action of another IAPs such as XIAP. XIAP is a strong inhibitor of apoptosis,
which interacts directly with caspases and inhibits them
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other IAPs [47, 48]. Interestingly, in normal cells survivin is not present in mitochon-
drial fractions [46], indicating that survivin translocation to mitochondria may be re-
lated to oncogenic transformation.

Several mechanisms have been proposed to explain anti-apoptotic activity of survivin.
Some investigators have speculated that survivin may inhibit effector caspase-3 directly,
even though it lacks a structural motif to bind directly with caspase-3, as is present in
other IAPs. It has been shown that phosphorylation of survivin at threonine 34 (Thr34)
is crucial for its anti-apoptotic functions. Another clue regarding anti-apoptotic mech-
anism of survivin came through its ability to interact with Smac/DIABLO suggesting
that survivin may suppress activation of caspases indirectly. Smac/DIABLO acts like
pro-apoptotic protein because of its participation in the formation of apoptosome and
activation of caspase-9 [44]. Therefore, it is proposed that survivin most probably inter-
feres in the down-stream steps of mitochondrial-apoptotic pathway, such as antagoniz-
ing apoptosome formation [12]. A point mutation in survivin protein at Asp-71 is
sufficient to eliminate its interaction with Smac/DIABLO and anti-apoptotic function
[49]. A strong inhibitor of apoptosis, XIAP interacts directly with caspases and inhibits
them [49, 50]. It has been reported that Smac/DIABLO antagonizes functions of XIAP
[50]. Therefore, presence of survivin may indirectly allow XIAP to function, ultimately
leading to inhibition of apoptosis (Fig. 2).

Regulation of survivin
Mechanisms of survivin regulation are still not fully understood. However, many signal-
ing pathways and factors have been reported to activate survivin in cancer cells. It was
originally thought that survivin up-regulation could be directly linked with cell prolifer-
ation, but its upregulation in non-proliferating Ki-67 MCF-7 breast cancer cells chan-
ged this concept [38]. It is now believed that overall intracellular pathways that activate
survivin are more active in cancer as compared to normal cells. Inconsistent, reporter
gene assays show negligible survivin promoter activity in normal cells as opposed to
cancer cell lines [38], suggesting differences in regulation of survivin expression.
Several oncoproteins such as c-Myc and H-Ras that exceptionally expressed in malig-
nant cells have been positively correlated with the upregulation of survivin. Studies
show that oncoproteins, at least c-Myc and H-Ras induced survivin expression through
PI3K signaling pathway, which is crucial for cancer cell survival [51, 52]. Amplification
of survivin locus on 17q25 and demethylation of survivin exon 1 has been implicated
in the upregulation of survivin in cancer cells [53, 54]. Importantly, mutations in ret-
inoblastoma and p53 gene and its functional losses are often associated with the up-
regulation of survivin in cancer cells. In normal cells, wild-type p53 and retinoblastoma
directly or indirectly repress survivin transcription [55, 56]. Since, E2F activators can
also induce survivin transcription, indicating that the retinoblastoma/E2F/p53 pathways
may contribute to aberrant survivin expression. Activation of signal transducer and ac-
tivator of transcription-3 (STAT-3) is associated with the up-regulation of survivin in
gastric cancer, breast cancer, and primary effusion lymphoma [57-59]. In colorectal
cancer, mutation in adenomatous polyposis coli (APC) tumor suppressor gene was as-
sociated with the aberrant stabilization of B-catenin and upregulation of survivin [60].
Nuclear factor-kappa B (NF-kB) is also associated with the transcriptional upregulation
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of survivin [61]. A p53/NF-«B crosstalk was reported to increase survivin expression in
p53 mutant cells that shows strong chemoresistance [62, 63]. In myeloid leukemia, sur-
vivin expression is up-regulated in response to hematopoietic cytokines [64], suggesting
that survivin expression can be controlled in autocrine or paracrine manner and
hematopoietic cytokines may deliver their anti-apoptotic functions by increasing survi-
vin. Besides upregulation, functional and structural stability of survivin in cancer cells
requires post-translational modification in its interactions with other proteins. For ex-
ample, survivin phosphorylation at threonine 34 by the cyclin dependent kinase 1
(CDK1) plays a crucial role in survivin function in cell division and in activation of
pro-caspase 9 [65]. It has been recently shown that survivin functions is also controlled
by acetylation at lysine residue K129, which directs survivin for nuclear localization
(66, 67]. Survivin interacts with Hsp90, a central molecular chaperone to the cellular
stress responses. This interaction involves the ATPase domain of Hsp90 and the BIR
domain of survivin. Any disruption in this interaction induces proteasomal degradation
of survivin [68, 69], suggesting Hsp90 protects survivin from degradation.

Survivin expression in SCC: aggressiveness and poor prognosis

Growing number of publications are correlating survivin with negative tumor prognosis
[17, 70, 71] Survivin is expressed in the vast majority of human cancers, including head
and neck, laryngeal, esophageal, lung, breast, ovarian, gastric, central nervous system,
colorectal, bladder, pancreatic, prostate, uterine, hepatocellular, and renal cancers, as
well as melanoma and soft tissue sarcomas [72, 73]. Almost all SSCs express high level
of survivin. Retrospective studies have been conducted to correlate expression of survi-
vin with disease variables and clinical outcomes [72, 73]. Overexpression of survivin is
often associated with tumor aggressiveness, poor prognosis, bad clinical outcome and
overall low rate of survival in SCC patients (Table 1).

Head and neck SCC

We have reported that survivin is overexpressed in majority of OSCC tissues, and in
~50% premalignant tissues [74], pointing out its early involvement in OSCC progres-
sion. As reported, accumulation of mutated p53 is considered a factor for survivin up-
regulation [55, 56], we observed a positive correlation between survivin and p53
expression in premalignant and malignant OSCC tissues [74]. Studies have established
a correlation between survivin status and oral cancer aggressiveness [75]. For examples,
survivin significantly segregated with high-grade and undifferentiated tumors and in-
variably associated with lymph node metastasis (indicators of tumor aggressiveness)
[76, 77], and ultimately this affects patient’s survival rate. These findings suggest that
the cases of OSCC with more aggressive and invasive phenotype may identify on
the basis of survivin expression, and therefore, could influence the decision for the
therapy at the time of diagnosis. As compared to cytoplasmic survivin, lower nu-
clear expression of survivin has been shown a strong predictor for relapse-free sur-
vival in the oral cancer patients [78], suggested survivin as an early predictive
marker for disease outcome. A meta-analysis study from 15 published articles
(1040 cases), in which survivin expression was determined either by immunohisto-
chemistry or RT-PCR in OSCC, found a positive correlation between survivin
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Table 1 Expression of survivin in SCCs. NC- no statistical correlation, IHC-immunohistochemistry,
RT-PCR- reverse transcriptase, WB-western blotting

Type of SCC Methods and Correlation with survivin Reference
number of — . - ; )
Clinicopathologic variables Prognosis Survival
samples
Oral and IHC, WB (49) Size, Nodal metastasis [76]
Oropharyngeal IHC (78) Size, Aggressiveness, Invasion Poor prognosis ! [771
IHC, RT-PCR, WB  Early expression, Predictive [227]
(110) invasive carcinoma
IHC (13) Distant non-lymphatic [75]
metastasis
IHC, RT-PCR (71) NC Poor prognosis ! [78]
IHC, WB (50) Metastasis, Associated with Poor prognosis l [81]
Aurora B
IHC, RT-PCR (29) Early expression, Predictive [74]
invasive carcinoma, Correlated
with p53 expression
PCR, WB 7,12-dimethylbenz[alanthracene [80]
(DMBA) carcinogenesis
Meta-analysis Lymph node metastasis, Poor prognosis [79]
(1040) Clinical stages
Laryngeal IHC (68) Site, Correlated with p53 Poor prognosis l [70]
IHC (86) Metastasis [228]
IHC (102) Metastasis [229]
Esophageal RT-PCR (51) Nodal status Poor prognosis l [83]
RT-PCR (57) Metastasis Poor prognosis ! [84]
IHC (84) Poor prognosis l [86]
Meta-analysis Lymph node Metastasis Poor prognosis l [71]
(610)
Non-small cell IHC (58), NC Poor prognosis l [95]
I
UNg CanCer4c RT-PCR (83) Early marker, Tumor stages [91]
Meta-analysis Tumor stages Poor prognosis [230]
(2703)
RT-PCR (71) NC ! [90]
IHC (102) Tumor size, Distant metastasis Poor prognosis 1 [92]
RT-PCR (140) Tumor differentiation, [93]
Aggressiveness, Correlated
with p53 mutation
Skin IHC, WB (89) Size, Nodal metastasis ! [76]
IHC (47 different Early marker, Disease progression [105]
groups)
IHC (62 different Keratinocytic neoplasms, [104]
groups) Hyperproliferative lesions
Cervical IHC (17) NC [231]
IHC, WB (53) Size, Lymphovascular invasion Poor prognosis [
IHC (59) Size, Tumor grade, Clinical Poor prognosis [112]
stages
IHC (73) HPV [114]
RT-PCR (50) Tumor stages, Correlated [109]
with bcl2
IHC (50) Clinical stages, CIN grade, Poor prognosis [110]

Lymph node metastases,
Correlated with p16INK4A

Page 7 of 32
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Table 1 Expression of survivin in SCCs. NC- no statistical correlation, IHC-immunohistochemistry,
RT-PCR- reverse transcriptase, WB-western blotting (Continued)

IHC (49) Clinical stage, Tumor size, Early diagnostic and [232]
Lymph node metastasis, poor prognosis
Correlated with PTEN

expression and lymph node metastasis and clinical stage [79]. However, analysis
did not find an association between survivin expression and tumor differentiation
grade, and depth of invasion. Other meta-analysis study from 610 esophageal can-
cer patients revealed a significant correlation between survivin over expression and
poor overall survival [71].

By using hamster buccal-pouch mucosa experimental model for oral carcinogenesis,
Dr. Chen and colleague found survivin up-regulation in all 7,12-dimethylbenz[a]anthra-
cene (DMBA)-induced hamster buccal-pouch squamous-cell carcinomas. They also
found demethylation of survivin allele in DMBS-induced OSCC, suggested gene ex-
pression may be modulated by an epigenetic mechanism [80]. As survivin regulates cell
division, a positive correlation has been observed between survivin expression other
chromosomal passenger proteins, such as Ki-67 and Aurora-B expression [81], which
involves in chromosome segregation. Tumors with increased nuclear survivin and
Aurora-B expression exhibited marked malignant behaviors [81]. Dr. Keller and colleagues
were able to distinguish between human papilloma virus (HPV) positive vs. negative
HNSCC samples on the basis of survivin level [82]. The results show that HPV-negative
tumors have high level of survivin and poorer prognosis than HPV-positive HNSCC.
Tumors with less than a median level of survivin expression were associated with im-
proved patient survival as compared to tumors with more than a median level of survivin

[82], proving survivin as a marker for improved survival.

Esophageal SCC

ESCC is one of the most malignant tumors. Survivin is overexpressed in most of
the esophageal cancer [83]. Malignant tissues showed significantly higher level of
survivin as compared to non-malignant tumors [83, 84]. The different splice vari-
ants of survivin were found to be associated with diverse tumor clinicopathological
variables. For example, a high cytoplasmic survivin correlated with histological dif-
ferentiation and invasion, and a high survivin 2B splice variant was associated with
poor prognosis in esophageal cancer patients [85]. High nuclear level of survivin
also correlated with poor prognosis [86]. In esophageal cancer, survivin overexpres-
sion provides a resistant phenotype, as indicated by increased rate of tumor recur-
rence and lower patient survival in the case of high expression of survivin as
compared to low survivin expression [83, 84, 86]. There is an inverse correlation
between miR-214-3p and survivin expression with the re-expression of miR-214-3p
down-regulate survivin expression via RNA-binding protein (RBP) CUG-BP1 lead-
ing to reduction of chemotherapy resistance in ESCC [87]. Case controls studies
from different populations showed that single nucleotide polymorphisms in survivin
gene, for example -31G/C influence the susceptibility to esophageal cancers in
Indian [88] and Chinese population [89].
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Lung SCC

Non-small cell lung carcinoma (NSCLC) is a major class of lung cancer. Most of the
NSCLC (80-90%) shows overexpression of survivin [90, 91]. Studies show a significantly
higher level of survivin in SCC as compared to adenocarcinoma of lung, [92—-94], where
it contributes to poor prognosis and decreased patient survival [90, 95]. Higher nuclear
survivin has been identified as an independent prognostic factor for lung SCC [95]. In
lung SCC, survivin up-regulation is associated with increased tumor angiogenesis and
metastasis [96]. Study suggested an early detection of survivin can be considered as
useful diagnostic tool for the detection of lymph node micrometastasis for stage I
NSCLC patients [97]. Since p53 is a regulator for survivin, mutation in p53 gene has
been positively correlated with the up-regulation of survivin in lung SCC [93]. In
addition, polymorphisms in the survivin gene have been found to influence survivin
production and thereby modulate susceptibility to lung cancer [98, 99].

Skin SCC

Squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and melanoma are three major
type of skin cancers. BCC and SCC are sometime called non-melanoma cancer [100]. Survi-
vin is overexpressed in both melanoma and non-melanoma skin cancers [76, 101-103]. It is
overexpressed in 64-92% skin SCC compared to normal skin [76, 104]. The level of survivin
is more in high grade and undifferentiated tumors with lymph node metastasis indicating
tumor aggressiveness and invasive behavior [76, 105]. The expression of survivin was also
present in high percentage of premalignant lesions of Bowen’s disease (SCC in situ) and
hypertrophic actinic keratosis (HAK), suggesting that its appearance occurs early during
keratinocyte transformation [105]. Dallaglio et al. [103] analyzed intracellular localization of
survivin and its correlation with keratinocytes differentiation and SCC. They found marked
increases of nuclear survivin (not cytoplasmic) in actinic keratosis and in SCC in situ, and
that was highest in poorly differentiated SCC. They found survivin mostly localizes
in the deep infiltrating areas of tumors that associated with increased cell migration
[103]. In skin, it is quite established that genetic alterations in keratinocyte stem cells
(KSC) gives rise to SCC-derived Stem-like Cells (SCC-SC) [106]. Survivin overexpression
is a key factor in the transformation of KSC to SCC-SC, and tumor-producing KSC can
be isolated on the basis of survivin expression [107]. Since, survivin support maintaining
SCC cancer stem cells [101, 108], it is one of the key factor for tumor recurrence and poor

clinical outcome in skin cancer

Cervical SCC

Many studies have found survivin overexpression in cervical SCC as compared to the nor-
mal tissues [109-112], and its expression associated positively with lesion size, lympho-
vascular invasion and poor prognosis [111], tumor grade and clinical stages [110, 112].
HPV infection is a leading risk factor for the development cervical cancer [113]. Studies
found a positive correlation between survivin expression and HPV infection in cervical
carcinoma [113, 114]. In contrary to other SCCs (in which nuclear survivin is associated
with poor prognosis), cytoplasmic survivin expression is associated with poor prognosis in
cervical carcinoma [115]. All these findings suggest survivin participate in the onset and

progression of cervical carcinoma.
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Diagnostic potential

Commonly used techniques, such as ELISA and immunohistochemistry are able to
measure survivin in tumor samples. In fact, many pharmaceutical companies, such as
Cell Signaling (Cat. 7169), Novus Biologicals (Cat. BEK-2121-2P) have come up with
commercial kits for survivin detection in biological samples. This may be a quick test
for poor prognosis and identifying patients with high risk of tumor recurrence, and
could be useful in decision making by clinicians on whether such these patients should
be subjected aggressive alternative protocols. Several clinical trials are being conducted
to establish survivin detection assays for cancer diagnosis (Table 2).

Survivin or its auto-antibodies have been found in biological fluids of cancer patients
that may be used for cancer diagnosis. For example, sensitive diagnostic tests have been
developed that are based on the presence of survivin in urine of bladder cancer patients
[116, 117]. Similarly, presence of survivin auto-antibodies in the saliva of OSCC pa-
tients provides a novel and practicable approach for OSCC screening [118, 119]. In
addition, anti-survivin antibodies were also detected in the circulating blood of cancer
patients [120], which can be exploited as a cancer diagnostic tool.

Therapeutic targeting of survivin

Survivin has been known for regulating various cellular processes including cell growth
and apoptosis. Expression of survivin is a very consistent feature of hyper-proliferative
lesions, which contribute in the development of hyperplasia. Several techniques have
been developed to examine therapeutic potential of survivin in cancer treatment. These
include inhibition of survivin expression using antisense oligonucleotides, ribozyme,
small interfering RNA (siRNA) or short-hairpin RNA (shRNA) techniques or antagon-
izing survivin function by dominant-negative survivin or by small molecules. Thera-

peutic uses of survivin have been evaluated in several preclinical and clinical studies.

Antisense technology

Antisense technologies are proving a useful tool for cancer therapeutics. These include
uses of antisense oligos, siRNA and shRNA techniques, which specifically suppressed
expression of target genes (Fig. 3). Antisense-RNAs can be expressed directly in cells
by delivering a plasmid or viral vectors or it can be synthesized chemically and trans-
fected into cells. Since survivin is overexpressed in many cancers, its down-regulation
by antisense-oligos could be of therapeutic use. Indeed, anti-survivin oligos have been
evaluated in many cancers to suppress survivin and its effects on cell death. Deliveries
of these oligos in cancer cells induce apoptosis and also increase anti-cancer effects of
other therapies such as chemotherapy and radiotherapy. Dr. Olie and colleagues [121]
have tested many anti-survivin oligonucleotides in study on NSCLC [121]. Out of many
designed oligonucleotides, 4003 was reported to be most effective in suppressing
NSCLC growth. We are conducting studies to investigate the role of survivin in
HNSCC resistance to conventional drugs. Our results have shown that survivin overex-
pression in HNSCC cells provide resistance against conventional drugs. siRNA-mediated
suppression of survivin significantly inhibits HNSCC cell proliferation and also increases
response of chemotherapy and radiotherapy [122, 123]. For pre-clinical studies, we have
developed lentivirus vector to deliver survivin-siRNA [124]. A significant growth
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Fig. 3 Schematic representation of different techniques to target survivin for therapeutic purposes. a
Antisense technology, such as antisense oligonucleotides, sSIRNA and shRNA target survivin mRNA to inhibit
translation. b Ribozyme is also an advanced antisense method to target mRNA. The specificity of ribozyme
determined by the paired regions flanking the cleavage site. ¢ Dimerization and phosphorylation on Thr34
residue is essential for survivin activation and Hsp90 provide stability to survivin dimer. Small molecule
antagonists for survivin activation, such as CDK and Hsp90 inhibitors, able to inhibit survivin
phosphorylation or its interaction with Hsp90, consequently inhibit survivin functions. d In dominant
negative mutants, an essential amino acid of the survivin is replaced by another amino acid that leads to
the loss of function. For example, Thr34Ala mutant inhibit survivin activation through abolishing
phosphorylation of Thr34 residue, and Cys84Ala mutant inhibit survivin dimerization. e Survivin-directed

immunotherapy approaches. Peptides-derived from survivin can induce CTL activity against tumor cells

reduction was observed in human HNSCC tumor xenograft in mouse model with survi-
vin knockdown-using lentivirus-siRNA therapy [125]. Furthermore, a high efficacy was
observed when we used a combination of lentivirus-siRNA and chemotherapy or radio-
therapy. Many other in vitro and in vivo studies have been conducted in which anti-
survivin techniques were used either alone or in combination with conventional drugs to
control cancer cell proliferation including most of the SCCs, such as oral [126], laryngeal
[127, 128], head and neck [129], skin [103], esophageal [87, 130], and lung [131].
Wen et al. [132] investigated inhibitory function of survivin in laryngeal SCC cell lines
GRIM-19 and Hep-2 using plasmid-based survivin-specific sShRNA. During proliferation
of laryngeal cancer cell lines undergoing transfection with p-siRNA, survivin was mark-
edly inhibited (79%). In vivo study also showed a significant suppression of Hep-2 tumor
growth and apoptosis induction due siRNA-mediated silencing of survivin. Survivin inhib-
ition by shRNA abrogated radiation-induced G2 phase arrest and amplified radiation-
induced apoptosis [128]. Stoleriu et al. [133] successfully tested multimodality therapy
regimen to treat chemoresistant NSCLC cell lines. siRNA-mediated knockdown of
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survivin along with other genes in these cell lines sensitized them to chemotherapies and
significantly induced apoptosis. Over-expression of survivin in OSCC makes it a potential
gene therapy target. A lentivirus vector encoding shRNA targeting survivin was used to
suppress the survivin gene in a study [134]. Inhibition of survivin reduced proliferation of
tumor cells in vitro and sensitized cells to radiation and vincristine. In the OSCC xeno-
graft model, both tumor development and growth of established tumors was inhibited
with survivin-lentivirus therapy. Similar growth inhibitory effects of survivin have been
observed by using anti-survivin siRNA in esophageal [87, 130] and skin SCC tumor xeno-
graft models [103].

As in SCCs, inhibition of survivin showed anti-proliferative effects in many other ma-
lignancies. An antisense oligo that targets 232 to 251 nucleotide sequence of survivin
showed a significant killing of mesothelioma cancer cells and also sensitized them to
chemo-radiotherapy [135]. Growth of lymphoma cells was also arrested by using
anti-survivin oligos [136]. In a study, adenoviral antisense vector targeting survivin
(pAd-CMV-SAS) was used to treat colon cancer, which resulted in an cell cycle ar-
rest of cancer cells in Go/Gl phase and induced chemotherapy-mediated cells
death [137]. PC-3 prostate cells showed nuclear fragmentation, hypodiploidy, acti-
vation of caspase-3, all apoptotic signatures when treated with antisense survivin
c¢DNA [138]. Similar observations were made in human neuroblastoma cells [139]. Survi-
vin knockdown by adenoviral vector (Adv-siSurv) expressing multiple anti-survivin oligos
induced apoptosis in many different cancer cell lines, in vitro [140, 141]. Intratu-
moral injection of this adeno-vector in human tumor xenograft mouse model sig-
nificantly suppressed tumor growth. A shRNA containing two reverse repeat motifs
was designed to target survivin gene. Treatment of liver cancer cell lines with this
vector efficiently down-regulated expression of survivin and induced apoptosis
[142]. These observations suggest that antisense technology targeting of survivin
could be a potential selective cancer therapy.

Dominant negative mutants

In this technique, a nonfunctional protein is formed due to the replacement of an es-
sential amino acid by another amino acid. Due to having the same targets, these non-
functional proteins compete with normal protein and dilute its function. Quite few
dominant negative mutants have been designed and tested for the inhibition of survi-
vin, out of which T34A mutant is well studied, in which threonine is replaced with ala-
nine at amino acid 34 (Fig. 3). Transduction of many different cancer cell types
including lung, breast, cervical, prostate, colorectal, liver, and skin with adenovirus vec-
tor (pAd-T34A) encoding a non-phosphorylated T34A mutant of survivin, induced
apoptosis by increasing cyt-c release from mitochondria and activation of procaspase-3.
This treatment also sensitized cancer cells to chemotherapeutic agents such as taxol
and adriamycin [143]. Transfection of malignant HeLa cells with T34A survivin mutant
could reverse the malignant phenotype [144]. Intratumor injection of pAd-T34A in a
tumor bearing mouse significantly suppressed pre-established tumor size by inducing
apoptotic cell death [143]. Injection of pAd-T34A in peritoneal cavity significantly re-
duced tumor growth of breast cancer cells in immunodeficient mice. Similar results
were observed in mice bearing NSCLC tumor [145]. Interestingly this treatment did
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not cause any visible effects on normal cell viability and systemic toxicity. In a similar
in vivo study, intratumoral injection of pAd-T34A suppressed tumor growth in prostate
cancer mouse model [146] and enhanced anti-androgen sensitivity [147]. These results
suggest that the uses of pAd-T34A may selectively target tumor cells with very limited
normal tissue toxicity.

Another interesting survivin-mutant (C84A) was constructed by replacement of
cystein residue at amino acid 84 with alanine. In gastric cancer cell lines, transfection
with plasmid expressing C84A mutant decreased cell growth and induced spontaneous
apoptosis [148]. In prostate cancer cell lines, C84A treatment is able to induce all apop-
totic hallmarks including hypoploid DNA, activation of caspases, and cleavage of cas-
pase substrates such as Poly (ADP-ribose) polymerase. Similar results were obtained
with cutaneous SCC, where C84A transfection resulted in spontaneous apoptosis even
without adding any other genotoxic stimuli. Due to this treatment, cells were arrested in
sub-GO0/G1 phase that correspond to apoptosis with a 4 N DNA content [105]. Injection
of adeno-associated virus in colon cancer mice model encoding C84A mutant suppressed
angiogenesis and tumor growth without causing normal cell toxicity [149]. In large-cell
lymphomas, injection of survivin mutant C84A reduced tumor cell growth and enhanced
cell death by increase of tumor-specific cytotoxic T lymphocytes [150] (Fig. 3).

Interestingly combined therapy using survivin negative dominant mutants and
chemo-radiotherapies showed better anti-tumor effects. Mostly the effects of survivin mu-
tants combined with other drugs were reported to be synergistic (more than additive). For
instance, combined treatment of NSCLC cells with T34A and radiation induced more cell
death than single drug treatments, and this effect was more than additive, suggesting that
the inhibition of survivin by T34A mutant could sensitize NSCLC cells to radiation treat-
ment [145]. In another study, lyposome complex was used to deliver survivin T34A mu-
tant with or without cisplatin. An intravenous injection of lyposome-T34A in mice, tumor
volume was reduced significantly. The antitumor effect of lyposome-T34A combination
with cisplatin was greater than their anticipated additive effects, suggesting a synergistic
interaction. In vivo studies also showed anti-angiogenesis effects of survivin dominant
negative constructs [151]. Zhang et al. [152] constructed a double dominant negative mu-
tant of survivin (T34A-C84A) for understanding whether it could have better potential to
kill cancer cells. Treatment of hepatocellular cancer cells with the adenoviruses expressing
this double mutant (Ad-T34A-C84A) showed much stronger cell killing as compared to
single survivin mutants T34A or C84A alone [152].

Ribozyme technique

Ribozyme (ribonucleic acid enzyme) is a new approach to degrade RNA in cells for
therapeutic purposes [153]. Several ribozyme molecules have been developed, of which
hammerhead ribozyme is best studied [154]. Hammerhead is the smallest ribozyme
containing a highly conserved core residue required for RNA cleavage and three base-
paired stems required for identifying the target site. It cleaved target mRNA just after
NUH sequence (N can be any nucleotide, and H can be any nucleotide except G) [155].
The specificity of target mRNA cleavage by ribozyme is much higher than siRNA ap-
proaches, which often produce off-target effects. Paired flanking regions of cleavage site
determine the specificity of cleavage (Fig. 3).
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Several ribozymes have developed to inhibit survivin in cancer cells. Choi et al. [156]
have designed two hammerhead ribozymes (RZ1land RZ2) to target human survivin
mRNA. These ribozymes cleaved survivin mRNA at nucleotide positions +279 and +289.
For functional study, an MCF-7 breast cancer cell line was transduced with adenoviral
vector encoding these ribozymes, which significantly reduced expression of survivin, and
consequently induced apoptosis[156]. In prostate cancer cell lines (PC-3 and DU145), in-
fection with adenoviral vector encoding a ribozyme targeting 3’-end of the survivin-
mRNA induced apoptosis [157]. Transduction of melanoma cancer cells with adenovirus-
vector expressing ribozyme increased sensitivity of cancer cells to chemo-radiotherapy
treatment [157, 158]. Four hammerhead ribozymes (R1 to R4) to suppress survivin gene
were designed by Fei et al. [159]. Adenoviruses encoding these ribozymes have been tested
in vitro and in vivo for controlling cancer cell growth. Results showed that inhibition of
survivin deregulates mitotic cell division and induces caspase-3-dependent apoptosis of
cancer cells. Injection of these ribozyme adenoviruses also suppressed tumor growth in a
xenograft mouse model of hepatocellular carcinoma. Study further demonstrated that the
combination of these ribozymes can give even better clinical outcomes, as reflected
by higher cancer cell death in a combination treatment of R1, R3 and R4 as com-
pared to single ribozyme treatment. All forms of survivin were cleaved during this
combination treatment, which gives a very strong anti-cancer effect [159]. Despite
high substrate cleavage efficiency, clinical application of ribozyme is still limited
due to misfolding and RNA degradation of ribozyme, when fused to a carrier. An
innovative chimeric ribozyme was constructed by Liu et al. (2007). This chimeric
ribozyme derived from a motor pRNA of phi29 bacteriophage, shows enhanced sta-
bility and robustness in folding [160]. In a variety of in vitro and in vivo cancer
models, treatment with this chimeric ribozyme has been found to suppress survivin
mRNA and protein efficiently, and strongly induced apoptosis with very limited
normal cell cytotoxicity. These studies clearly indicate that ribozyme-targeting of
survivin in cancer cells could be of therapeutic use.

Immunotherapy

Enhancing immune response against cancer cells represents a fascinating approach to
cancer treatment. Tumor cell specific antigens can be recognized by host immune system
as short peptides bind with MHC (major histocompatibility complex) molecules [161]. As
an exclusive tumor marker, survivin evidently activates T-cell immune response. Several
survivin epitopes have been identified, which can induce cytotoxic T-lymphocyte (CTL)
activity against cancer cells [162] (Fig. 3). In an interesting experiment, dendritic cells
were infected with adenovirus-expressing survivin in the hope that endogenous overex-
pression of survivin may display some immunogenic short survivin peptides as human
leukocyte class I or II antigens (HLA-I or II), and for avoiding any pro-oncogenic side ef-
fects, survivin dominant negative mutant was used [163]. Three HLA-A2 matching pep-
tides of survivin have been identified against which T-cell immune response was induced
by immunizing with these dendritic cells, and this CTL activity was found to be against
cancer cells overexpressing survivin, such as MCF-7 breast cancer cell line [163]. Another
study showed that CTL activity can be induced against B-cells transfected with survivin-
expressing vector, which produced survivin-epitopes on the cell surface [164].
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HLA-T restricted T-cell epitopes of survivin were also found in cancer patients that
induced CTL response [165, 166]. Survivin-induced CTL have been tested against differ-
ent malignancies, which are found to kill different HLA-matched tumors [167, 168]. A
survivin-2B-derived HLA-24-restricted immunogenic peptide (aa-80-88: AYACNTSTL)
has been identified that is recognized by CD8" CTL [102]. On the basis of this peptide, a
vaccine was developed and tested in a phase-I clinical trial on advanced stage patients
with lung, breast and colorectal cancer, who were found to overexpress survivin-2B splice
variant [169]. Another phase I trial of survivin-2B80-88 peptide vaccination has been
started on HLA-A24-positive patients with advanced or recurrent OSCC, in which
vaccine is being administered subcutaneously or intratumorally. Initial results have
demonstrated the safety and marginal clinical effectiveness of this vaccine alone
(UMIN000000976) [170]. However, subsequent clinical trials of survivin-based vaccin-
ation in combination with other drugs could be a promising therapeutic strategy to tackle
advanced cancers (Table 2).

Survivin-specific antibodies have been found in the blood samples of cancer patients
[164] and also reported in the tumors, but are absent in healthy specimens. This can be
used for inducing humoral immune response. Purification of antibodies gives an oppor-
tunity to rationally design survivin-epitopes and consequently to develop cancer
vaccines. A specific CTL response can be induced by presenting processed survivin-
epitopes on dendritic cells [171]. Another approach to detect a specific T-cell response
in cancer patients is based on the identification of tumor-specific survivin epitopes
using ELISPOT assay [172, 173]. The presence of these survivin-epitope specific T-cells
in tumor lesions indicated its tumor specificity [172]. Dr. Hooijberg and colleagues are
exploring the possibility of using vaccination for the treatment of HNSCC patients
based on dendritic cells targeting survivin [174]. His team was able to measure
survivin-specific T cells ex vivo in peripheral blood and draining lymph node derived
from HNSCC patients by using tetramer and ELISPOT analysis. Recently, a vaccine
named SurVaxM is a peptidomimetic of survivin, which has entered in clinical trials
(NCT01250470) (Table 2). These findings suggest that immunotherapy based on survi-
vin may provide a novel approach for cancer treatment.

Small molecule inhibitors

Small molecules targeting cancer signaling pathways offer an attractive strategy for con-
trolling tumor growth. A range of small molecules and peptides has been identified that
control tumor cell proliferation by targeting survivin (Fig. 3). Increasing understanding
of molecular mechanisms that regulate survivin expression and function is providing
opportunities for designing new molecules, which selectively intercept survivin func-
tions in cancer cells.

Histone deacetylase inhibitors (HDACi)

Histone acetylation/deacetylation plays an important role in epigenetic regulation of
transcription in eukaryotic cells [175]. Histone acetylation is tightly controlled by the
balance of two groups of enzyme named histone acetyl transferases (HATs) and histone
deacetylases (HDACs). HATs-mediated histone acetylation activates transcription
through several transcriptional factors, whereas HDACs invert this reaction [175, 176].
This acetylation and deacetylation takes place on lysine residues at the N-terminal of
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core histones [176, 177]. Many cell cycle and apoptotic regulatory genes are regulated by
the HATs/HDAC: system. It has been suggested that deacetylation of survivin may poten-
tially promote its cytoplasmic localization and allowing it to interact with a-tubulin. The
a-tubulin binding site of survivin is located within the domain containing amino acids
99-142, including the lysine-129 residue, an target for deacetylation that play important
role in survivin cytoplasmic localization, dimerization and stability [178, 179].

HDAC proteins have become pervasive cancer treatment targets due to their involvement
in multiple signaling pathways that provide a survival advantage for tumor cells [180]. Many
small molecules that block HDAC have been identified [181]. On the basis of structure,
HDAC i are classified in different groups, which include short-chain fatty acids (eg. VPA-
valproic acid, NaB-sodium butyrate); cyclic tetrapeptides (eg. depsipeptide); hydroxamic
acids (SAHA-suberoylanilide hydroxamic acid, TSA-trichostatin, Vorinostat, LAQ824,
LBH529 and PXD101); and amides (MS-275, MGCDO0103, CI-994). Clamydocin is one of
the well-known HDACIi, which has been tested to suppress proliferation of cancer cells
[182]. Like other HDAC;, treatments of clamydocin induced hyperacetylation of H3 and H4
histones in cancer cells and consequently arrest the cell cycle by activating expression of
many important cell cycle regulatory genes, such as p21. It has been shown that clamydocin
induces apoptosis by activating caspase-3. Fei et al. (2004) has demonstrated that clamydo-
cin induces cancer cell apoptosis by proteasome-mediated degradation of survivin [183].
LAQ824 also induces apoptosis in cancer cells by down-regulating survivin protein [183].

It is known that TGEp signaling decreases survivin expression in cancer cells in re-
sponse to stress [184]. A report has suggested that HDACi belinostat represses survivin
expression in TGFB-dependent manner leading to cancer cell death. The early repres-
sion of survivin is mediated by proteasomal degradation, whereas the late suppression
involves transcriptional repression of survivin expression [185]. Since survivin is
expressed in cell cycle dependent manner, it is possible that cell cycle arrest may sup-
press transcription of the survivin promoter. Indeed, a report published showing that

PWAFL/CIPL yhich in turn activates survivin

belinostat treatment increases level of p2
degradation mediated by suberoylanilide hydroxamic acid (SAHA)-dependent up-
regulation of TGFp [186]. A recent study shows that selective inhibition of HDAC2 by
SAHA induces survivin downregulation in p53-dependent manner through MDM2
proteasomal degradation [187]. In prostate cancer cells, TSA treatment induced apop-
tosis, which is mediated by Cyclin B1/Cdc2-dependent degradation of survivin protein
[188]. A clinical trial was conducted using SAHA in combination with fluorouracil, iri-
notecan hydrochloride and leucovorin calcium with the purpose to evaluate the safety
and efficacy of SAHA along with these drugs in phase I and phase II, and to study al-
terations in TGF-f signaling and survivin expression (Table 2).

NEF-kB contributes significantly to tumorigenesis by activating anti-apoptotic signal-
ing pathways [189], leading to the up-regulation of anti-apoptotic proteins such as sur-
vivin. HDACi have been shown to suppress NF-kB signaling [190]. Kramer and
colleagues suggested that induction of cancer cell apoptosis with the treatment of
HDACi such as VPA is driven by hyperacetylation of Statl that allow its interaction
with NF-kB and reduces NF-kB signaling [191], thus suppressing expression of NF-kB
target genes including Bcl-XL, survivin, and Stat5. A study shows that valpromide
(VPM), an amide analog of VPA that does not inhibit HDAC also potentiates cell death
in cancer cells associated with decreased level of survivin indicating an alternative
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mechanism of VPA-mediated apoptosis [192]. Farnesylthiosalicylic acid, a Ras inhibitor
was tested in combination with VPA. This treatment has shown a significant reduction
in cancer cell proliferation due to the down-regulation of Ras and CPC proteins survi-
vin and aurora B [193]. The characteristic features of CPC depletion such as cell cycle
arrest, multinucleation and failure of cytokinesis were also reported. Interestingly VPA
can also enhance anti-cancer effects of the other drugs such as cisplatin in in vivo stud-
ies on human tumor xenographt models [194]. An HDACi, OBP-801 (also known as
YM?753) and LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) act synergis-
tically when used in combination to control growth of renal carcinoma cells. This com-
bination treatment induces apoptosis mediated by survivin attenuation, which in turn
activates caspase-3, -8 and -9 [195]. Recently, thailandepsin A (TDP-A) a novel class I
HDAC; has been tested for anticancer effects on thyroid carcinoma [196] and treat-
ment shows inhibition of anti-apoptotic proteins survivin and bcl-2, which trigger
caspase-dependent apoptosis.

Hsp90 inhibitors
Hsp90 is an important molecular chaperone for the accurate folding and stabilization of
various proteins including survivin. It plays central role during cellular stress conditions. It
has been discovered that interaction takes place between BIR domain of survivin and
ATPase domain of Hsp90 [69]. Disruption of the survivin-Hsp90 complex by using tar-
geted antibody or global inhibition of Hsp90 functions causes proteasomal degradation of
survivin, consequently inducing mitotic defects and mitochondrial-dependent apoptosis.
These results provide a direct link between cellular stress responses and survivin-mediated
mitotic checkpoint. Thus, rational approaches to target survivin-Hsp90 complex, and con-
sequent destabilization of survivin protein may be used in cancer therapeutics (Fig. 3).
Shepherdin is a first antagonist derived from survivin sequence Lys79—-Leu87 to inhibit
Hsp90-survivin complex formation. It is a cell-permeable peptidomimetic, which attenu-
ates formation of Hsp90-survivin complex by competing with survivin to bind at the same
site on Hsp90 [197]. Interestingly, despite being derived from survivin sequence, shepher-
din is also destabilized by many other Hsp90-binding proteins, such as Akt, telomerase
and CDK® in favor of inducing apoptosis. As reported in many studies, shepherdin can
trigger both caspase-dependent and caspase-independent cell death pathways. For ex-
ample, shepherdin treatment suppressed growth of prostate and breast tumors in xeno-
graft models, and showed minimal normal cell toxicity [197, 198]. For overcoming
limitation of peptide therapy, a recombinant adeno-associated virus (rAAV) was devel-
oped to deliver shepherdin in cancer cells. rAAV transduction significantly decreased the
level of survivin and induced caspase-dependent apoptosis in NSCLC cells [199]. Blocking
of survivin-Hsp90 complex formation also sensitized resistance cells to conventional
drugs. For instance, treatment of resistant chronic myelogenous leukemia cells with shep-
herdin enhanced cell death induced by hydroxyurea and doxorubicin [200]. Shepherdin is
currently in the pre-clinical phase [201]. Furthermore, a number of other Hsp90 inhibitors
such as 17-DMAG, 17-AAG, Isoxazolo(aza)naphthoquinones, NVP-AUY922 and NVP-
BEP800 are currently undergoing discovery and clinical trial phases [202-205].

Cyclin-Dependent Kinase Inhibitors (CDKi)
Phosphorylation of survivin on Thr34 during mitosis is a key to its functional activation
[206]. Tumor cells could acquire resistance against paclitaxel due to the induction of



Khan et al. Cellular & Molecular Biology Letters (2017) 22:8 Page 23 of 32

survivin phosphorylation at the time of cell cycle arrest. Therefore, CDKi were tested
in cancer cells arrested in mitosis with paclitaxel to inhibit survivin phosphorylation,
which paclitaxel-induced apoptosis [206, 207]. Flavopiridol (CDKi) and purvalanol A
(p34cdc2 inhibitor) are tested in this in vivo study (Fig. 3), in which cells escaped from
paclitaxel-mediated cell cycle arrest due to loss of survivin functions [206]. A novel
CDKi, NU6140 (4-(6-cyclohexylmethoxy- 9Hpurin-2-ylamino)-N,N-diethyl-benzamide)
has been tested on Hela cancer cells and results suggesting that inhibition of survivin
phosphorylation is a potential underlying mechanism by which CDKi induced taxol-
mediated apoptosis [208]. A pharmacological study was conducted to evaluate the effects
of a new CDKi roscovitine (ROSC) on doxorubicin resistant human multiple myeloma
cells [209], in which exposure of ROSC induced hypoploidy condition, suggesting cells
were undergoing apoptosis. Destabilization of survivin was involved in this ROSC-
induced apoptosis. Ibulocydine (an isobutyrate prodrug of the CDKi, BMK-Y101) have
shown strong anti-proliferative effects in hepatocellular carcinoma (HCC) xenograft
mouse [210], which is again mediated by the down-regulation of survivin and other anti-
apoptotic proteins.

Other inhibitors

Several other molecules have been developed to target survivin for clinical applications.
Terameprocol (meso-tetra-O-methyl nordihydroguaiaretic acid) drug has shown to in-
hibit transcription of specific protein 1 (Spl) regulated genes, such as survivin and
cdc2 [211], which subsequently activates mitochondrial-apoptotic pathway. Systemic
treatment of this drug suppressed tumor growth in human xenograft mouse model
[212]. However, Spl can regulate transcription of several other genes, and it is possible
that terameprocol suppresses tumor growth by not only survivin-mediated pathway,
but also involving other pathways. A phase-I and II clinical trials of terameprocol are
being conducted on patients with refractory solid tumors (NCT00664586), lymphoma
and leukemia (NCT00664677) (Table 2). Since interaction of survivin with Smac/DIABLO
plays a crucial role in anti-apoptotic functions of survivin, an analog, 5-deazaflavin was
designed to block this interaction. Treatment with this analog induces apoptosis in cancer
cells by activation of stress pathways [213].

YM155 is an imidazolium-based small molecule, which selectively inhibits survivin in
many different cancer cell lines, such as OSCC, ESCC, HNSCC, NSCLC, colon and
cervical carcinoma [214-217]. Studies show that YM155 function as a transcriptional
suppressor for survivin promoter [67]. Glaros and colleagues proposed that YM155
could precede selective transcriptional inhibition of survivin due to DNA damage in-
duction [218]. The YM155 discoverer research group at Astellas Inc. found that YM155
directly interacts with a transcription factor ILF3, which plays an important role in sur-
vivin transcription in association with p54™™ [219]. Specifically YM155 binds with C-
terminal region of ILF3, which is also critical for survivin expression [220]. Recently,
Sachita et al. [221] demonstrated that YM155 causes apoptosis of human oral cancer
cell lines Sp1-mediated downregulation of survivin. In vitro studies showed strong anti-
proliferative activity of this molecule and a nanomolar concentration range is enough
to clinically achievably dose. YM155 have also shown to induce non-apoptotic cancer
cell death via poly-ADP polymer (PARP-1) activation and AIF translocation from
the cytosol to the nucleus [216]. Genetic knockdown of PARP-1 or AIF abrogated
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YM155-induced cell death in esophageal cancer [216]. In HNSCC, YM155 treatment trig-
gered both mitochondrial and receptor-mediated apoptosis. YM155 significantly induced
autophagy in HNSCC cells by upregulating Beclinl that leads to cell death [217]. Further,
many in vivo studies showed a strong suppression of tumor growth in a variety of tumor
xenographt models, such as NSCLC, lymphoma, prostate cancer, HNSCC, ESCC
[216, 217, 222]. Several clinical trials of YM155 are ongoing with different cancer pa-
tients (Table 2). Early results have shown safety and efficacy of YM155 in phase I [223]
and phase II [224] clinical trials on NSCLC patients. In another phase I clinical trials on
patients with different cancers, YM155 showed a good response in preliminary results
[225]. A phase II clinical trial of YM155 is ongoing on patients with advanced melanoma
and B-cell lymphoma [226]. Also, a phase I clinical trial of a combination therapy using
YM155 and docetaxel is in progress for patients with prostate cancer (NCT00514267).
These studies are indicating that not only molecular therapy but small compounds and
peptides targeting survivin provide potent antitumor effects.

Conclusions

Survivin is one of the top five tumor markers, exclusively overexpressed in most can-
cers, making it an ideal target for cancer therapeutics. High level of survivin help in the
promotion of cancer development through contributing via a wide range of cellular
mechanisms including growth and apoptotic pathways. In cancer patients, an elevated
level of survivin is often associated with poor prognosis and therapy resistance, and it
also promotes metastasis in cancer cells. Several gene silencing studies have clearly
demonstrated a crucial role of survivin in cancer development. Currently, most of the
cancer treatment protocols are an involved combination of surgery, chemotherapy and
radiotherapy, but even after substantial growth in this direction, patient survival rates
have not changed much. Therefore, lots of studies are being conducted to explore the
possibility of using molecular targeting therapies along with conventional therapies to
tackle the menace of cancer. An increasing number of clinical trials are taking place
with the selected patients based on validated biomarker-enrichment (Table 2). Survivin
is considered an excellent molecular target for cancer treatment, and several thera-
peutic strategies, such as gene silencing, immunotherapy, and small molecule inhibition
have been designed and tested in different pre-clinical and clinical studies. In the fu-
ture, administration of survivin-targeted agents alone or in combination with conven-

tional therapies may generate a novel therapeutic strategy against cancer.
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