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Abstract

The natural dihydroflavonol (+) taxifolin was investigated for its protective effect on
Fenton reagent-treated bone marrow-derived mesenchymal stem cells (bmMSCs).
Various antioxidant assays were used to determine the possible mechanism. These
included •OH-scavenging, 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide
radical-scavenging (PTIO•-scavenging), 1, 1-diphenyl-2-picryl-hydrazl radical-scavenging
(DPPH•-scavenging), 2, 2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) radical-
scavenging (ABTS+•-scavenging), Fe3+-reducing, and Cu2+-reducing assays. The Fe2
+-binding reaction was also investigated using UV-Vis spectra. The results revealed that
cell viability was fully restored, even increasing to 142.9 ± 9.3% after treatment with (+)
taxifolin. In the antioxidant assays, (+) taxifolin was observed to efficiently scavenge •OH,
DPPH• and ABTS+• radicals, and to increase the relative Cu2+- and Fe3+-reducing levels.
In the PTIO•-scavenging assay, its IC50 values varied with pH. In the Fe2+-binding
reaction, (+) taxifolin was found to yield a green solution with two UV-Vis absorbance
peaks: λmax = 433 nm (ε =5.2 × 102 L mol−1 cm −1) and λmax = 721 nm (ε = 5.1 × 102 L
mol−1 cm −1). These results indicate that (+) taxifolin can act as an effective •OH-
scavenger, protecting bmMSCs from •OH-induced damage. Its •OH-scavenging action
consists of direct and indirect antioxidant effects. Direct antioxidation occurs via multiple
pathways, including ET, PCET or HAT. Indirect antioxidation involves binding to Fe2+.

Keywords: (+) Taxifolin; bmMSCs, •OH damage, Antioxidant mechanism, Electron transfer,
Fe2+ binding

Background
Antioxidant supplementation has been suggested as a means to reduce the DNA dam-

age and relieve oxidative stress during the expansion and proliferation of bone

marrow-derived mesenchymal stem cells (bmMSCs) [1]. This oxidative stress is a re-

sult of the imbalance between ROS production and diminished endogenous antioxi-

dant protection. Accumulative ROS (especially •OH with a half-life of 10−9 s) not only

have the potential to damage all types of biomolecules (such as DNA, proteins, lipids

and carbohydrates), but can also inhibit MSC immunomodulation, thus increasing sen-

escence and reducing ex vivo expansion, which is critical for clinical application off the

cells [2]. Effective antioxidants that could protect MSCs from oxidative stress are a de-

sirable focus of research.
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From the perspective of free radical biology, plants also encounter serious oxidative

stress from strong UV-Vis light, atmospheric ROS, temperature changes, and the pro-

cesses of oxygen consumption for photosynthesis. Notably, some plants, such as pine,

have what could be considered a strong vital force and a long history of survival. They

have successfully resisted oxidation from complicated ecological environments and may

serve as a library of efficient phenolic antioxidants [3].

Pine grows on the Sharon Plain in Israel and in mountains and highlands around the

world. Notable species and varieties are Pinus pinaster (French maritime pine) [4],

Pseudotsug amenziesii [5], Pinus massoniana Lamb [6], Pinus sylvestris var. mongovica

Litvin [7] and Larix olgensis Henry var. Koreana Nakai [8]. Pine has survived for ap-

proximately 1.9 hundred million years, suggesting that it possesses strong defenses,

probably including a strong antioxidant defense with numerous antioxidant compo-

nents. In fact, extract from the bark of French maritime pine has been developed as an

antioxidant supplement known commercially as Pycnogenol, which has a bioactive

component named (+) taxifolin (2R,3R–dihydroquercetin, Fig. 1) [4, 9].

As shown in Fig. 1a, (+) taxifolin is actually a dihydroflavonol that exists in the afore-

mentioned pine types. It was reported to inhibit free radical formation at key stages of

apoptosis in cellular mitochondria [10] and to correct cerebral ischemia-reperfusion in-

jury [11]. Recently, (+) taxifolin was found to exhibit anticancer and neuroprotective ef-

fects [12–14].

This indicates that (+) taxifolin has potential as an antioxidant for protecting MSCs

against oxidative stress damage. However, no study has reported on the protective ef-

fects of (+) taxifolin towards •OH-treated bmMSCs.

Here, we applied the methyl thiazolyl tetrazolium (MTT) assay to assess the protect-

ive effects of (+) taxifolin on •OH-treated bmMSCs. We then explored the possible

mechanisms for this effect.

Methods
Chemicals and animals

The chemicals (+) taxifolin (CAS number: 480–18-2, 98%), dihydromyricetin (CAS

number: 27,200–12-0, 98%), and 4’-O-methyltaxifolin (CAS number: 70,411–27-7,

98%) were obtained from Chengdu Biopurify Phytochemicals Ltd. Catechol (CAS

Fig. 1 Structure (a) and preferential conformation-based ball-and-stick model (b) of (+) taxifolin
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number: 120–80-9, 99.5%) and DNA sodium salt (fish sperm) were purchased from

Aladdin Chemistry Co. The 1, 1-diphenyl-2-picryl-hydrazyl radical (DPPH•), (±)-6-hy-

droxyl-2, 5, 7, 8-tetramethylchromane-2-carboxylic acid (trolox), 2, 9-dimethyl-1, 10-

phenanthroline (neocuproine), 3-(2-pyridyl)-5, 6-bis (4-phenylsulfonicacid)-1, 2, 4-triazine

(ferrozine), 2, 4, 6-tripyridyltriazine (TPTZ), 2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-

oxyl-3-oxide radical (PTIO•), and methyl thiazolyl tetrazolium (MTT) were purchased

from Sigma-Aldrich Shanghai Trading Co. The CCK-8 (BB-4221-2) kits were from Best-

Bio Inc. (NH4)2ABTS [2, 2′-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid diammo-

nium salt)] was obtained from Amresco Chemical Co. Dulbecco’s modified Eagle’s

medium (DMEM), fetal bovine serum (FBS) and trypsin were purchased from Gibco. All

other reagents were of analytical grade.

Sprague-Dawley (SD) rats (4 weeks old) were obtained from the Animal Center of

Guangzhou University of Chinese Medicine. The protocol was performed under the

supervision of the Institutional Animal Ethics Committee at the Guangzhou University

of Chinese Medicine.

MTT assay to assess the protective effect against •OH-induced damage

The bmMSCs were cultured according to our previous report [15] with slight modifica-

tions. In brief, bone marrow was obtained from the femur and tibia of the rats. Marrow

samples were diluted with low-glucose DMEM containing 10% FBS. MSCs were pre-

pared by gradient centrifugation at 900×g for 30 min on 1.073 g/ml Percoll. The pre-

pared cells were detached by treatment with 0.25% trypsin and passaged in culture

flasks at 1 × 104/cm2. At passage 3, bmMSCs were evaluated for cell homogeneity using

CD44 detection via flow cytometry. These cells were used for the subsequent

experiments.

The protective effect of (+) taxifolin against •OH-induced bmMSC damage was in-

vestigated based on the method described in [16, 17] with slight modifications. Briefly,

bmMSCs were seeded at 5000 cells per well into 96-well plates. After adherence for

24 h, bmMSCs were divided into control, model and sample [(+) taxifolin] groups.

In the control group, bmMSCs were incubated for 24 h in DMEM. In the model and

sample groups, bmMSCs were incubated in the presence of FeCl2 (100 μM) followed

by H2O2 (50 μM). After incubation for 20 min, the mixture of FeCl2 and H2O2 was re-

moved. The bmMSCs in the model group were incubated for 24 h in DMEM, while

bmMSCs in the sample group were incubated for 24 h in DMEM with the indicated

(+) taxifolin concentrations.

After incubation, 20 μl MTT (5 mg/ml) was added, and the culture was incubated for

an additional 3 h. The culture medium was discarded and replaced with 150 μl DMSO.

Absorbance was measured at 490 nm on a Bio-Kinetics reader (PE-1420; Bio-Kinetics

Corporation). Culture medium containing serum was used for the control group and

each sample test was repeated in five independent wells.

Hydroxyl-scavenging assay based on DNA

The hydroxyl-scavenging effect of (+) taxifolin was estimated using a method developed

by our laboratory [18]. Briefly, methanol sample solutions (1.2 mg/ml, 20–100 μl) were

separately aliquoted into mini tubes. After completely evaporating the methanol solvent
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in each tube to dryness, the sample residue was treated with 300 μl of phosphate buffer

(0.2 M, pH 7.4), followed by 50 μl of DNA sodium (10 mg/ml), 75 μl of H2O2

(33.6 mM), 50 μl of FeCl3 (3.2 mM), 100 μl of Na2EDTA (0.5 mM) and 75 μl of ascor-

bic acid (12 mM). After incubation at 50 °C for 20 min, 250 μl of trichloroacetic acid

(10%, w/v) was added to the tube. After heating the mixture at 105 °C for 15 min with

150 μl of 2-thiobarbituric acid (TBA, 5% in 1.25% NaOH aqueous solution), the absorb-

ance was measured using a Unico Spectrophotometer UV 2100 against the buffer

(blank). The protective effect is expressed as follows:

Protective effect% ¼ A0‐A
A0

� 100%;

where A0 indicates the absorbance of the blank and A indicates the absorbance of the

sample (+) taxifolin.

PTIO•-scavenging assay

The PTIO•-scavenging assay was conducted based on our method [19]. In brief, 80 μl

of an aqueous PTIO• solution (0.1 mM) was mixed with 20 μl of phosphate buffer at

pH 5.0, 6.0, 7.0, 7.4, 8.0 and 9.0 containing 1 mg/ml of sample at the indicated concen-

trations. The mixture was maintained at 37 °C for 30 min, and the absorbance was

measured at 560 nm on a microplate reader (Multiskan FC, Thermo Scientific). The

PTIO• inhibition percentage was calculated as follows:

Scavenging% ¼ A0‐A
A0

� 100%;

where A0 indicates the absorbance of the blank and A indicates the absorbance of the

sample, (+) taxifolin.

DPPH•-scavenging assay and ABTS+•-scavenging assay

DPPH• radical-scavenging activity was determined as previously described [20]. Briefly,

1 ml of DPPH• solution (0.1 M) was mixed with the indicated concentrations of sample

(0.15 mg/ml, 14–70 μl) dissolved in methanol. The mixture was maintained at room

temperature for 30 min, and the absorbance was measured at 519 nm on a Unico Spec-

trophotometer 2100.

ABTS+•-scavenging activity was evaluated according to a previously described

method [21]. ABTS+• was produced by mixing 0.2 ml of ABTS diammonium salt

(7.4 mM) with 0.35 ml of potassium persulfate (2.6 mM). The mixture was maintained

in the dark at room temperature for 12 h to allow completion of radical generation and

then diluted with 95% ethanol. To determine the scavenging activity, the test sample (x =

15–75 μl, 0.03 mg/ml) was added to (200- x) μl of 95% ethanol followed by 800 μl of

ABTS+• reagent, and the absorbance was measured at 734 nm on a Unico Spectropho-

tometer 2100 6 min after the initial mixing using 95% ethanol as the blank.

The percentage of DPPH•-scavenging (or ABTS+•-scavenging) activity was calculated

based on the formula given in the PTIO•-scavenging assay section.
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Cu2+-reducing assay

The reducing power capacity of cupric ions (Cu2+) was measured according to a previ-

ously described method [22] with a slight modification. Briefly, 125 μl of CuSO4 aque-

ous solution (10 mM), 125 μl of neocuproine ethanolic solution (7.5 mM) and 750 μl

of CH3COONH4 buffer solution (0.1 M, pH 7.5) were added to test tubes with different

volumes of sample (0.15 mg/ml, 15–75 μl). The total volume was adjusted to 1 ml with

buffer and mixed vigorously. The absorbance against a buffer blank was measured at

450 nm after 30 min. An increase in the absorbance of the reaction mixture indicates

an increase in reduction capability. The relative reducing power of the sample relative

to the maximum absorbance was calculated using the following formula:

Relative reducing effect% ¼ A‐Amin

Amax‐Amin
� 100%;

where Amin is the absorbance of the control without sample, A is the absorbance of the

reaction mixture with sample, and Amax is the maximum absorbance of the reaction

mixture with sample.

Ferric-reducing antioxidant power (FRAP) assay

The FRAP assay was adapted from Benzie and Strain [23]. Briefly, FRAP reagent was

freshly prepared by mixing 10 mM TPTZ, 20 mM FeCl3 and 0.25 M acetate buffer at

1:1:10 (pH 3.6). The test sample (x = 20–100 μl, 0.5 mg/ml) was added to (100- x) μl of

95% ethanol followed by 400 μl of FRAP reagent. The absorbance was measured at

593 nm after a 30-min incubation at ambient temperature using distilled water as the

blank. The relative reducing power was calculated using the formula given in the

Cu2+-reducing assay section.

UV-vis spectra and color reaction of Fe2+-binding

The (+) taxifolin–Fe2+ complex was evaluated using UV-Vis spectroscopy. For these ex-

periments, 300 μl of a methanolic solution of (+) taxifolin and 100 μl of an aqueous so-

lution of FeCl2•4H2O were added to 600 μl of an aqueous mixture of distilled water

and methanol (1:1). The solution was then mixed vigorously and continuously scanned

using a UV-Vis spectrophotometer (Unico 2600A) from 200 to 900 nm after 0, 10, 20,

30, and 60 min.

The above experiment was repeated using 4’-O-methyltaxifolin.

Statistical analysis

Each experiment was performed in triplicate and data were recorded as the means ±

SD (standard deviation). Dose response curves were plotted using Origin 6.0 software

(OriginLab). IC50 was defined as the final concentration of 50% radical inhibition (rela-

tive reducing power or binding effect). Statistical comparisons were made using one-

way ANOVA to detect significant differences using SPSS 13.0 (SPSS Inc.) for Windows.

p < 0.05 was considered statistically significant.

Results and discussion
As shown in Fig. 2, in the model group, the bmMSCs damaged by •OH presented only

33.1 ± 4.4% viability. However, following treatment with (+) taxifolin (3.3–164.3 μM),
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cell viability was restored or even increased. This result suggests that (+) taxifolin ef-

fectively protects bmMSCs from •OH-mediated damage. This is consistent with the re-

cent report that (+) taxifolin could reduce cholesterol oxidation product-induced

neuronal apoptosis [24]. At higher concentrations (>50 μg/ml, 164.3 μM), (+) taxifolin

could even further promote the viability of bmMSCs, reaching 142.9 ± 9.3% viability.

To test the possible toxicity to MSCs, the effect of (+) taxifolin towards normal

MSCs was measured using the CCK-8 assay (an updated version of the MTT

assay). The results indicated that (+) taxifolin (3.3–328.7 μM) had no effect on

proliferation and no toxic effect on normal MSCs without •OH-treatment (Add-

itional file 1: Figure S1). These results align with the previous findings that (+)

taxifolin could be an apparent exception that could efficiently inhibit the Fenton

reaction and superoxide radical formation [25, 26] while being completely nonpho-

totoxic, unlike its analogue quercetin [13, 27]. These results are inconsistent with

another previous study that showed taxifolin was toxic to oocytes at higher con-

centration (50 μg/ml, 164.3 μM) [28].

It is assumed that when (+) taxifolin was mixed with Fenton reagents, some reaction

products may be generated to bring about the beneficial (especially protective) effect.

In fact, a similar situation is observed with salvianolic acid B, which can increase cell

viability to 175.1% [29]. In the case of the salvianolic acid B molecule, some characteris-

tic chemical structures, such as catechol or lactone moieties [29], have been suggested

to be partly responsible for the protective effect. The moiety of fused rings (A/B) is also

hypothesized to play a role in the process. Some antioxidants comprising 8-

hydroxyquinol have been demonstrated to induce MSC proliferation [30, 31]. However,

the detailed mechanisms should be investigated further.

Such protective effects from •OH damage have been reported to be related to •OH

scavenging [32]. In this study, (+) taxifolin was found to exhibit •OH-scavenging ability

in a dose-dependent manner (Additional file 1: Figure S2). The IC50 Trolox/IC50 (+) taxifo-

lin value (1.67; Table 1) suggests that (+) taxifolin is a better •OH scavenger than trolox,

which is a standard antioxidant.

Fig. 2 Protective effect of (+) taxifolin towards •OH-treated bmMSCs determined using the MTT assay. The •OH
radical was generated via the addition of Fenton reagent (FeCl2•4H2O) followed by H2O2. Each value is
expressed as the mean ± SD, n = 3; *p < 0.05 vs. model (MSCs damaged by •OH radical). **p < 0.05 vs. control
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•OH scavenging comprises two pathways: direct and indirect. The direct antioxidant

pathway directly scavenges the •OH free radical that has been generated via the Fenton

reaction. However, •OH is a very transient species so it is impossible to verify whether

•OH is directly scavenged. Therefore, we used a stable oxygen-centered radical, PTIO•,

for the investigation. As seen in Additional file 1: Figure S3A, (+) taxifolin scavenged

the PTIO• radical at various pH values in a dose-dependent manner.

Correspondingly, the IC50 values varied with various pH values: 2.6 ± 0.5, 1.6 ± 0.2,

0.7 ± 0.03, 0.6 ± 0.04, 0.5 ± 0.04 and 0.4 ± 0.02 mM respectively for pH 5.0, 6.0, 7.0,

7.4, 8.0 and 9.0 (Additional file 1: Table S1). This indicates the involvement of the dir-

ect antioxidant pathway in •OH scavenging by (+) taxifolin. When the IC50 values were

plotted against pH values, a first-order decay curve was observed (Additional file 1:

Figure S3B), suggesting that a high level of H+ (low pH value) considerably sup-

pressed the PTIO•-scavenging ability of (+) taxifolin. Thus, the radical-scavenging

ability of (+) taxifolin is hypothesized to be involved in H+ transfer, consistent with

the cyclic voltammetry-based evidence [33].

It has been documented that at a pH ≤ 5.0, PTIO• can be scavenged via electron

transfer (ET) [33]. Our assay suggests that (+) taxifolin may also scavenge PTIO• at

pH 5.0, indicating the involvement of ET in its antioxidant action. This is further sup-

ported by its ABTS+•-scavenging, Cu2+-reducing and Fe3+-reducing (i.e., FRAP) abilities

(Additional file 1: Figures S4-S6). ABTS+•-scavenging is considered to be an ET-based

pathway [34]. The ABTS+•-scavenging ability of (+) taxifolin indicates the involvement

of ET in the antioxidant process. Furthermore, (+) taxifolin increased the relative Cu2

+-reducing and FRAP-reducing abilities in a concentration-dependent manner. The

FRAP (at pH 3.6) and Cu2+-reducing activities have been demonstrated to be an ET re-

action [35]. It should be noted that the Fe3+-reducing potential of flavonoids may also

reduce Fe3+ into Fe2+ to cause pro-antioxidation [36]. It remains unknown whether the

pro-antioxidation is linked to (+) taxifolin cytotoxicity to oocytes at higher concentra-

tion [28].

In this study, (+) taxifolin efficiently scavenged the DPPH· radical (Additional file 1:

Figure S7). DPPH· scavenging is regarded as a hydrogen atom transfer-based multi-

pathway [32]. Successful DPPH· scavenging by (+) taxifolin indicated that hydrogen

atom transfer may occur in its direct antioxidative process. Moreover, it was recently

reported that these direct antioxidative pathways are not exclusive but are rather com-

petitive based on various reaction conditions [34].

Table 1 The IC50 values of (+) taxifolin and trolox in various assays (μM)

Assays (+) taxifolin Trolox Ratio value

•OH-scavenging 259.2 ± 4.4 a 411.4 ± 17.0 b 1.59 Average 1.67

PTIO•-scavenging* 663.9 ± 34.4 a 736.8 ± 29.9 b 1.11

DPPH•-scavenging 16.0 ± 0.2 a 18.5 ± 0.4 b 1.16

ABTS+•-scavenging 4.6 ± 0.2 a 11.4 ± 0.2 b 2.48

Cu2+-reducing 22.4 ± 0.5 a 40.4 ± 1.9b 1.80

FRAP 33.7 ± 1.0 a 62.8 ± 1.0 b 1.86

The IC50 value was defined as the final concentration of 50% radical inhibition (relative reducing power). It was
calculated by linear regression analysis, and expressed as the mean ± SD (n = 3). The linear regression was analyzed using
Origin 6.0. Mean values with different superscripts (a or b) in the same row are significantly different (p < 0.05). *The
assay was conducted at pH 7.4. The ratio value is defined as IC50 Trolox/IC50 (+) taxifolin. The dose–response curves are
shown in Additional file 1: Figures S2-S7
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Because Fe2+ can catalyze the Fenton reaction, where H2O2 yields •OH radicals, an

attenuation of Fe2+ levels via a binding reaction is considered an indirect antioxidant

mechanism to scavenge •OH radicals [37]. In the indirect antioxidant assay, (+) taxifo-

lin bound to Fe2+ to yield a green solution and two Vis absorbance peaks: λmax =

433 nm (ε =5.2 × 102 L mol−1 cm −1) and λmax = 721 nm (ε = 5.1 × 102 L mol−1 cm −1).

In the UV spectra, Fe2+ binding enhanced the peak strength around 290 nm (Fig. 3).

These results strongly indicate a binding reaction between Fe2+ and (+) taxifolin and

that Fe2+ binding may act as one indirect pathway in the antioxidative process of (+)

taxifolin.

As reported previously [36], adjacent keto or hydroxyl groups are potential targets of

Fe2+ binding, while isolated keto-group (or hydroxyl-group) cannot bind iron. Never-

theless, the 3, 4-hydroxyl-keto moiety cannot give a planar conformation (Fig. 1b), and

can barely form the planar five-membered Fe2+-complex. As a dihydroflavonol, (+) taxi-

folin contains only two Fe2+-binding sites: the 3′, 4′-catechol moiety and the 4, 5-

hydroxyl-keto moiety (Fig. 4) [38].

Despite several reports on the metal-binding of flavonoids [38–40] and descriptions

of Na+ interacting with flavonoids [41], studies focusing on UV-Vis spectral analyses

(especially peak assignment) are lacking. To confirm the assignment of the UV-Vis

peaks in Fig. 3, we investigated the Fe2+-binding of catechol and dihydromyricetin (ref-

erence compounds), because in (+) taxifolin and dihydromyricetin, the possible π–π

conjugation is blocked by a single 2, 3 carbon–carbon bond, and the B ring and A/C

fused rings are independent of each other. Thus, the whole (+) taxifolin molecule can

be divided into two spectroscopic systems: the benzoyl skeleton and the catechol moi-

ety (Additional file 1: Figure S8). Catechol contains a similar chemical structure to the

B ring of (+) taxifolin, while dihydromyricetin bears a similar chemical structure to the

A/C fused rings (benzoyl skeleton) of (+) taxifolin.

Catechol–Fe2+ gave two similar absorbance peaks (at approximately λmax 433 and

721 nm) in the Vis spectra to those of (+) taxifolin-Fe2+ and yielded a green solution

(Additional file 1: Figure S9). By contrast, the dihydromyricetin molecule bearing a

Fig. 3 The UV-vis spectra of (+) taxifolin and its Fe2+-complex. a Comparison of UV spectra of 0.05 mmol/l
(+) taxifolin and 0.05 mmol/l (+) taxifolin plus 2.5 mmol/l Fe2+. b Vis spectra of 1.0 mmol/l (+) taxifolin and
Vis spectra of the reaction mixtures of 1.0 mmol/l (+) taxifolin with 50.0 mmol/l Fe2+ for 0, 10, 20, 30,
60 min (① 50.0 mmol/l Fe2+; ② 1.0 mmol/l (+) taxifolin; ③ reaction mixture for 0 min; ④ reaction mixture
for 10 min; ⑤ reaction mixture for 20 min; ⑥ reaction mixture for 30 min; ⑦ reaction mixture for 60 min.
The inset in Fig. 3B is the appearance of solutions
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pyrogallol moiety in the B ring presented a strong absorbance peak at λmax 589 nm

[42], and 4’-O-methyltaxifolin without catechol moiety only gave a UV absorbance peak

at λmax 289 nm (Additional file 1: Figure S10). Thus, it can be deduced that the peaks

in the Vis spectra of the (+) taxifolin–Fe2+ complex are from the Fe2+-binding reaction

with catechol in the B ring.

With respect to the UV spectra, an enhanced strength of the UV peaks was observed

in the Fe2+-binding reaction with (+) taxifolin (Fig. 3a), similar to the dihydromyrice-

tin–Fe2+ complex and 4’-O-methyltaxifolin–Fe2+ complex (Additional file 1: Figures S8

& S11). Dihydromyricetin and 4’-O-methyltaxifolin share a similar benzoyl skeleton

with (+) taxifolin. Thus, the enhancement of peak around 290 nm can be attributed to

the Fe2+-binding reaction of the 4-hydroxyl-5-keto moiety. This assumption is further

supported by the different colors between the (+) taxifolin–Fe2+ complex and the 4’-O-

methyltaxifolin–Fe2+ complex.

Conclusion
As an effective •OH-scavenger, (+) taxifolin can protect bmMSCs from •OH-induced

damage. Its •OH-scavenging action consists of direct and indirect antioxidant effects.

The direct antioxidation occurs via multiple pathways, including ET, PCET and HAT.

The indirect antioxidation involved Fe2+ binding. Upon binding to Fe2+, the 3′,4′-cat-

echol moiety in the B ring gives rise to two peaks (λmax 433 nm and 721 nm), and the

4-hydroxyl-5-keto of the benzoyl skeleton causes an enhanced peak intensity around

290 nm.
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Fig. 4 Proposed reaction of (+) taxifolin binding to Fe2+ (including UV-Vis spectra assignments)
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