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Abstract

Background: Impairment of the blood–brain barrier (BBB) could result in secondary
cerebral edema and life-threatening pancreatic encephalopathy in patients with
severe acute pancreatitis (SAP). Mesenchymal stem cells (MSCs) have been widely
adopted in clinical research because of their pleiotropic functions. The aim of this
study was to investigate the impact of MSCs on BBB permeability in SAP and the
potential mechanisms driving these effects.

Methods: Sprague-Dawley rats were randomly assigned to the control, SAP and
SAP+MSCs groups. Pancreatic impairment was assessed. The serum levels of amylase,
TNF-α and IL-10, expression levels of claudin-5, Bax, Bcl-2 and MMP-9, and the BBB
permeability were measured. Endothelial cell apoptosis was evaluated.

Results: SAP rats showed BBB impairment with increased permeability and secondary
cerebral edema, which was confirmed using the Evans blue assay and the calculation
of the brain dry/wet ratio. Treatment with MSCs decreased the serum levels of amylase
and TNF-α, increased the serum levels of IL-10, attenuated the apoptosis of brain
microvascular endothelial cells, upregulated claudin-5 expression and downregulated
MMP-9 expression. This treatment attenuated the increased BBB permeability in SAP
rats.

Conclusions: MSCs attenuated the impairment of the BBB and decreased its
permeability, producing protective effects in SAP rats.

Keywords: Severe acute pancreatitis, Blood–brain barrier, Mesenchymal stem cell,
Inflammatory response, Endothelial cell

Background
Pancreatic encephalopathy (PE) is a rare and serious complication of severe acute pan-

creatitis (SAP) presenting with psychogeny, with a high mortality rate of approximately

67% [1]. The underlying pathogenesis remains to be explored, but the main promising

hypothesis suggests that PE development is closely related to a blood–brain barrier

(BBB) impairment that causes increased permeability.

The BBB protects the central nervous system from pathogens [2]. It is mainly com-

posed of brain microvascular endothelial cells (BMECs), paracellular junctions, astro-

cytes, pericytes and the basement membrane [3]. BMECs and paracellular junctions

are the structural and functional components of the BBB. Paracellular junctions
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include tight, adherens and gap junctions [4–6], and claudin-5 is a critical tight junc-

tion protein for maintaining the integrity and stability of the barrier [7].

Matrix metalloproteinase-9 (MMP-9) is a member of the zinc-dependent metallopro-

teinase family, which is involved in the degradation of extracellular matrix components.

It has been reported that MMP-9 causes increased degradation of collagen IV in the

vascular basement membrane and a subsequent increase in BBB permeability in dia-

betic mice following a stroke [8]. MMP-9 is often upregulated by various inflammatory

cytokines and mediators in an aggravated inflammatory response following brain injury,

leading to an increase in BBB permeability. However, it is unclear whether MMP-9 is

upregulated in SAP rats with increased BBB permeability.

Mesenchymal stem cells (MSCs) have been widely applied in clinical research as a re-

sult of their superior multipotential differentiation, low immunogenicity and paracrine

function. A recent study demonstrated that they exert immunomodulatory effects dur-

ing the treatment of various inflammatory diseases [9]. Another study showed that they

promote tissue repair and have anticancer properties [10]. In our previous study, we

demonstrated that MSCs protect the endothelial barrier in the small intestine and kid-

ney in SAP rats [11, 12]. However, their similar effects on the BBB in SAP rats and the

underlying mechanisms remain unclear. In this study, an SAP rat model was estab-

lished to study the potential mechanisms of impairment of the BBB and the effects of

MSCs on this important barrier.

Materials and methods
Animals

Germ-free adult male Sprague-Dawley (SD) rats weighing 200–250 g were obtained

from Shanghai SLAC Laboratory Animal Co. Ltd. They were allowed to acclimatize for

a week in rooms with a 12-h light–dark cycle at a temperature of 20 ± 2 °C. All animal

experimental protocols were approved by the Experimental Animals Committee of Fu-

jian Medical University. All experimental animals received humane care and were

treated according to ethical guidelines and standards [13].

The rats (n = 30) were randomly divided into 3 groups: control, SAP and SAP+MSCs

(n = 10 per group). An SAP model was established for the rats in the SAP and

SAP+MSCs groups. The rats in the SAP+MSCs group received 1 ml of MSCs (approxi-

mately 1 × 106 cells/ml) via an injection into the femoral vein after the establishment of

the model. All the animals were euthanized after 12 h for sample collection.

Isolation, culture and identification of MSCs

MSCs were isolated using the differential adherence method, as described previously

[14]. The tibia and femur of a 1-month old SD rat were separated, and the bone mar-

row cavities were exposed and flushed with Dulbecco’s modified Eagle’s medium

(DMEM; HyClone). The collected DMEM was centrifuged at 300×g for 5 min, then re-

suspended, supplemented with 10% (w/v) fetal bovine serum (FBS; Gibco) and 1% peni-

cillin/streptomycin (HyClone). The cells were inoculated in a 25-cm2 culture flask at a

concentration of 5 × 107 cells/ml, then incubated at 37 °C with 5% CO2. Non-adherent

cells were removed by washing the flask with phosphate-buffered saline (PBS; HyClone)

three times 24 h later. The medium was changed every 2–3 days until the cells reached
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a confluency of 80–90%. The MSCs were purified by dissociation, and the third gener-

ation was used for further experiments.

MSCs were identified using flow cytometry analysis (FACS, Beckton Dickinson) by

detecting the cell surface markers CD29, CD34, CD45 and CD90. The respective

phycoerythrin-conjugated primary antibodies were a mouse/rat anti-CD29 antibody

(1 μg; eBioscience), mouse anti-CD34 antibody (1 μg; Santa Cruz Biotechnology), rat

anti-CD45 antibody (0.25 μg; eBioscience) and mouse/rat anti-CD90 antibody (0.06 μg,

eBioscience).

Establishment of an SAP animal model

Retrograde injection of 5% sodium taurocholate (0.1 ml/100 g body weight, Inalco Spa)

into the biliopancreatic duct was used to establish an SAP rat model, as described pre-

viously [15, 16]. Before the operation, the rats were allowed to drink water but were

fasted for 12 h. Anesthesia was performed via an abdominal cavity injection with 10%

chloral hydrate (3 ml/kg body weight, Bio Basic). A 1- to 1.5-cm incision in the midline

of the upper abdomen was used for the laparotomy. A 0.45-mm diameter polyethylene

catheter was used for the injection, which was performed at a speed of 0.04 ml/min

using a microinfusion pump that was removed 10 min later. In the control group, the

pancreas and duodenum were maneuvered during the laparotomy without any injection

into the biliopancreatic duct. The abdomen was closed with sutures, and after the sur-

gery, the rats were given 4 ml normal saline/100 g body weight every 6 h via subcutane-

ous injection at multiple sites on the back.

Histological analysis

Four micron sections of the harvested body of the pancreas were stained with

hematoxylin and eosin (H&E), then viewed under a light microscope (Carl Zeiss). The

pathological changes were evaluated with a pathological scoring system [17].

Serum amylase detection and enzyme-linked immunosorbent assay (ELISA)

Serum was obtained from the collected blood samples with centrifugation at 3000 x g

at 4 °C for 10 min. It was stored at − 80 °C until further analysis. The serum amylase

level was measured with an Olympus AV2700 automated clinical biochemistry analyzer.

The serum levels of tumor necrosis factor α (TNF-α) and interleukin-10 (IL-10) were

detected with a rat ELISA kit (R&D Systems) in accordance with the manufacturer’s

instructions.

Evans blue assay

We prepared another 3 groups of experimental rats following the same experimental

procedures to measure the permeability of the BBB using the Evans blue assay as previ-

ously described [18]. Evans blue solution (Sigma) at a concentration of 2% at 5 ml/kg

body weight was injected into the femoral vein 1 h before the rats were euthanized.

The circulating dye was cleared with a perfusion of cold PBS. The harvested brain tis-

sue was homogenized and incubated in dicarboxamide at 37 °C for 48 h. After centrifu-

gation at 300×g for 5 min, the optical density (OD) of the supernatants was measured
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at 620 nm absorbance with a SpectraMax M5e Multi-Mode Microplate Reader (Mo-

lecular Devices).

Brain dry/wet ratio calculation

The brain dry/wet ratio was calculated to evaluate the severity of cerebral edema. The

collected frontal lobe was weighed before and after drying in an oven at 80 °C for 48 h.

The ratio was calculated as dry weight (g)/wet weight (g).

Quantitative real-time PCR

Total RNA was extracted from the brain tissue with Trizol reagent (Life Technologies)

followed by reverse transcription into cDNA with a Transcriptor First Strand cDNA

Synthesis Kit (Roche) in accordance with the manufacturer’s instructions. Quantitative

real-time PCR was conducted with a StepOnePlus Real-Time PCR System (Applied

Biosystems) with Bestar SybrGreen qPCR Mastermix (DBI Bioscience). Glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) was used as an internal reference. The relative

expression of each gene was calculated with the 2−ΔΔCT method. The primer sequences

included rat GAPDH, 5′-GCGAGATCCCGCTAACATCA-3′ and 5′-GGCACCGT

TGGATCATAG-3′; claudin-5, 5′-GCACTCTTTGTTACCTTGAC-3′ and 5′-GGCA

CCGTTGGATCATAG-3′; Bcl-2-associated X (Bax), 5′-CAGACGGCAACTTCAACT-

3′ and 5′- CTTCCAGATGGTGAGTGA − 3′; and B-cell lymphoma 2 (Bcl-2), 5′-

GCAGAGATGTCCAGTCAG-3′; 5′-ATCCACAGAGCGATGTTG-3′(as indicated in

Addtional file 1).

Western blot analysis

Brain tissue was homogenized on ice, and ice-cold RIPA lysis buffer (Beyotime) con-

taining 1 mM PMSF (Beyotime) was added to each sample. After centrifugation at 14,

000×g at 4 °C for 10 min, the supernatants were collected. The protein concentration

was measured with a BCA kit (Beyotime). Approximately 50 μg of protein was sepa-

rated via SDS-PAGE with an appropriate concentration of SDS. The protein was then

transferred to nitrocellulose membranes. The membranes were incubated with the fol-

lowing primary antibodies at 4 °C overnight: mouse anti-claudin-5 (1:500, Invitrogen),

mouse anti-Bax (1:1000, Cell Signaling Technology), rabbit anti-Bcl-2 (1:1000, Abcam),

rabbit anti-MMP-9 (1:1000, Abcam) and mouse anti-β-actin (1:1000, Transgen). Then,

the membranes were incubated with the appropriate secondary antibodies at 25 °C for

2 h: goat anti-mouse IgG-HRP and goat anti-rabbit IgG-HRP antibodies (1:5000, Cell

Signaling Technology). After detection with a ChemiDocTM MP imaging system (Bio-

Rad), the results were analyzed with Image J software version version 1.48.

Immunohistochemistry staining

Following dewaxing, rehydration and antigen retrieval, the 4-μm sections of the brain

tissue were incubated with hydrogen peroxide to block endogenous peroxidase, then

blocked with 5% bovine serum albumin (BSA; Sigma) for 1 h. The sections were incu-

bated with anti-claudin-5 antibody (1:50, Invitrogen) at 4 °C overnight and then with

secondary antibody (1:100; Abcam) for 30 min at 37 °C. Peroxidase activity was
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visualized with 3-diaminobenzidine (DAB). Then, the slides were stained with

hematoxylin, dehydrated with a gradient alcohol, cleared with xylene, and cover

slipped.

Terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) assay

As previously described [19], the sections of brain tissue were incubated with a TUNEL

reaction mixture (TUNEL staining kit; Roche) at 37 °C for 1 h following dewaxing, re-

hydration and blocking endogenous peroxidase. After staining with DAPI (1:1000;

Sigma), the sections were viewed under a fluorescence microscope (Carl Zeiss), and the

TUNEL- and DAPI-positive cells were counted.

Statistical analysis

Data are presented as the means ± SD (standard deviation) and were analyzed with the

statistical software SPSS 19.0. Differences between the groups were analyzed using one-

way analysis of variance (ANOVA) with multiple comparisons. p < 0.05 was considered

statistically significant.

Results
The culture and identification of rat MSCs

The MSCs adhering to the wall of the culture flask 24 h after inoculation were purified

via dissociation. The third-generation MSCs were spindle-shaped and adherent

(Fig. 1a). After harvesting, the MSCs were identified using flow cytometry for specific

cell surface markers, including CD29, CD34, CD45 and CD90. Flow cytometry analysis

showed that CD29-, CD34-, CD45- and CD90-positive cells respectively accounted for

approximately 99.28, 0.94, 1.44 and 97.79% of the cells, which met the requirements for

further experiments (Fig. 1b).

MSCs alleviated pancreatic impairment and decreased BBB permeability in SAP rats

The typical manifestations of SAP, including ascites and scattered saponification spots

on the mesenterium and the greater omentum, were observed when the rats were eu-

thanized. The control group did not show pathological changes in the pancreas based

on H&E staining. Pancreatic edema, hemorrhage, necrotic acini and the infiltration of

inflammatory cells were observed in the SAP group under a light microscope (Fig. 2a).

Fig. 1 The culture and identification of rat MSCs. a Morphology of rat MSCs under a light microscope, scale
bar represents 50 μm. b Flow cytometry for the detection of the MSC cell surface markers CD29, CD34,
CD45 and CD90
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The pancreatic impairment in the SAP+MSCs group was milder than in the SAP group.

In concordance with these changes, the pancreatic pathological scores also showed that

the SAP group had a significantly higher score than the control group, and that the

score decreased with MSC treatment (p < 0.001; Fig. 2b).

To assess the potential impacts of MSCs on the BBB in SAP rats, the Evans blue

assay and the brain dry/wet ratio were used to evaluate BBB permeability and sec-

ondary cerebral edema. The values of the Evans blue assay for the control, SAP

and SAP+MSCs groups were respectively 1.39 ± 0.21, 3.02 ± 0.24 and 2.34 ± 0.18

mg/dl and those for the brain dry/wet ratio were respectively 0.27 ± 0.01, 0.21 ±

0.01 and 0.25 ± 0.01 (Fig. 2c and d). The results showed a higher Evans blue value

and a lower brain dry/wet ratio value in the SAP group than in the control group,

indicating increased BBB permeability with serious secondary cerebral edema in

SAP rats (p < 0.001). The changes were partly reversed in SAP rats that received

MSC treatment, which showed that MSCs decreased BBB permeability and exhib-

ited protective abilities (p < 0.001).

MSCs attenuated the severity of systematic inflammation in SAP rats

In the control, SAP and SAP+MSCs groups, the levels of serum amylase were re-

spectively 869 ± 154, 7393 ± 1071 and 5042 ± 1119 IU/l; the levels of serum TNF-α

were respectively 82.5 ± 13.8, 237.6 ± 41.7 and 147.7 ± 39.2 pg/ml; and the levels of

serum IL-10 were respectively 37.4 ± 11.8, 26.3 ± 5.6 and 62.7 ± 16.6 pg/ml (Fig. 3a–

c). The serum levels of amylase and TNF-α were higher and the level of IL-10 was

lower in the SAP group than those in the control group (p < 0.05). In contrast, the

Fig. 2 MSCs alleviated pancreatic impairment and decreased BBB permeability in SAP rats. a H&E staining of
the pancreas (× 200). No obvious pathological changes were observed in the control group, while edema,
hemorrhage, necrotic acini and the infiltration of inflammatory cells were observed in the SAP group. The
pancreatic impairment in the SAP+MSCs group was milder than that in the SAP group. b Pancreatic
pathological scores. c Brain dry/wet ratio calculation. d The results of the Evans Blue assay.
***p < 0.001, ****p < 0.0001)
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serum levels of amylase and TNF-α were lower and the level of IL-10 was higher

in the SAP+MSCs group (p < 0.001) than those in the SAP group. These results

show that MSCs attenuate pancreatic impairment and decrease the levels of serum

amylase and TNF-α while increasing the level of serum IL-10 in SAP rats.

MSCs decreased the downregulation of claudin-5 in the brains of SAP rats

The expression level of the tight junction protein claudin-5 was measured to evaluate

for the mechanism leading to the impairment of the BBB. Immunohistochemistry stain-

ing showed a higher expression of claudin-5 in BMECs in the control group than in the

SAP group. The expression of claudin-5 in the SAP+MSCs group was higher than that

in the SAP group, although it was lower than that in the control group (Fig. 4a).

The results of the quantitative real-time PCR and western blotting assays were in ac-

cordance with those of the immunohistochemistry staining (Fig. 4b and c). These re-

sults revealed that claudin-5 was downregulated in the brains of SAP rats compared to

its expression in the controls. This might have contributed to the increased BBB per-

meability. Treatment with MSCs partly reversed the downregulation of claudin-5,

maintaining the stability of the BBB.

MSCs reduced BMEC apoptosis in the brains of SAP rats

TUNEL staining was performed to assess apoptosis in the brains of SAP rats. TUNEL

staining revealed no apoptosis in the control group, but numerous apoptotic cells,

mainly BMECs, were observed in the SAP group (p < 0.001). Fewer apoptotic cells were

observed in the SAP+MSCs group than in the SAP group (p < 0.001; Fig. 5). The results

show that brain cells become apoptotic in SAP and that treatment with MSCs attenu-

ates apoptosis.

MSCs upregulated Bcl-2 expression and downregulated Bax expression in the brains of

SAP rats

To explore the potential molecular apoptotic mechanisms, the expression levels of

the apoptotic protein Bax and the antiapoptotic protein Bcl-2 were measured. The

results of western blotting assays and quantitative real-time PCR revealed that Bax

was upregulated and Bcl-2 was downregulated in the SAP group compared with

the levels in the control group (p < 0.05; Fig. 6a and b).

Fig. 3 MSCs attenuated the severity of systematic inflammation in SAP rats. a Serum amylase levels. b
Serum TNF-α levels. c Serum IL-10 levels. *p < 0.05, ***p < 0.001, ****p < 0.0001
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The results of the TUNEL staining show numerous apoptotic cells, and the up-

regulation of Bax and downregulation of Bcl-2 are possible stimuli of brain cell

apoptosis in the SAP rats. The lower expression level of Bax and higher expression

level of Bcl-2 in the SAP+MSCs group than in the SAP group (p < 0.05) indicate

that the MSCs partly reversed the modulation of Bax and Bcl-2. In summary,

MSCs decreased the upregulation of Bax and the downregulation of Bcl-2 to pro-

duce anti-apoptotic effects on brain cells in SAP rats.

MSCs reduced the upregulation of MMP-9 in the brains of SAP rats

The expression of MMP-9, which has been reported to be a cause of increased

BBB permeability, was also measured. A western blotting assay showed that there

was a higher expression level of MMP-9 in the SAP group than in the control

group (p < 0.05), while the expression level was reduced in the SAP+MSCs group

(p < 0.05) (Fig. 7) compared to that in the control group. The results show that

MMP-9 was upregulated in the SAP group and that this upregulation was reduced

by MSCs.

Discussion
Severe acute pancreatitis (SAP) is a critical acute abdominal disease characterized by

systemic inflammatory response syndrome (SIRS) in the clinical setting [20]. In a cas-

cading reaction, capillary endothelial cells can easily be attacked by a large number of

circulating inflammatory cytokines, resulting in capillary leak syndrome (CLS), which is

a serious impairment of the endothelial barrier [21, 22].

The blood–brain barrier (BBB) protects the CNS from pathogens. It is an ideal endo-

thelial barrier with very strong barrier properties [23, 24]. Impairment of the BBB refers

to CLS in the brain. In SAP, it is associated with increased permeability. The treatment

Fig. 4 MSCs attenuated the downregulation of claudin-5 in the brains of SAP rats. a Immunohistochemistry
staining of the brain (× 400). The immunohistochemistry staining shows that there is a higher expression of
claudin-5 in BMECs in the control group than in the SAP group. The expression of claudin-5 in the
SAP+MSCs group was higher than in the SAP group, although it was lower than in the control group. b
Results of the quantitative real-time PCR assay of claudin-5 gene expression in the brains of SAP rats. c (i)
Representative western blotting image of claudin-5 protein expression in the brains of SAP rats. (ii)
Statistical analysis of claudin-5 protein expression based on a western blotting assay. *p < 0.05, **p < 0.01
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of CLS is a critical component of SAP therapy, and the prevention and treatment of

pancreatic encephalopathy (PE) mainly lie in the protection of the BBB. It is essential

for reducing complications and decreasing the mortality rate.

Lesions of any component can impair the BBB, meaning a decrease in integrity and

function [25] and an increase in permeability. Our study used the Evans Blue assay and

the brain dry/wet ratio calculation to confirm the impairment of the BBB in SAP rats

with increased permeability and secondary cerebral edema, which is in line with results

of a previous study [26].

We also explored the underlying mechanisms of the impairment of the BBB and

came to the following conclusions. First, injury or apoptosis of BMECs could cause

BBB impairment. The BMECs are directly exposed to the circulating blood flow

and could be easily affected by inflammatory cytokines in response to injury or

apoptosis during inflammatory situations [27]. In SAP, the remarkably increased

levels of serum amylase and inflammatory cytokines, such as TNF-α, might lead to

BMEC injury. TUNEL staining revealed numerous apoptotic BMECs in SAP rats,

which was in line with previously published reports. In combination with the re-

sults of quantitative real-time PCR and western blotting assays, which showed a re-

markable increase in Bax expression and a decrease in Bcl-2 expression, we infer

that the upregulation of Bax and downregulation of Bcl-2 is a possible mechanism

of BMEC apoptosis.

Second, the downregulation of the tight junction protein claudin-5 could contribute

to BBB impairment. Claudins are important components that maintain the tight junc-

tions that are responsible for BBB integrity [28, 29]. Claudin-5 is the main transmem-

brane protein component of tight junctions in BMECs, and it has been reported that

claudin-5 is the only molecule whose function is specifically required to maintain the

BBB [7]. Previous studies have demonstrated that paracellular tight junctions are

Fig. 5 MSCs reduced BMEC apoptosis in the brains of SAP rats. a TUNEL staining of the brain, scale bar =
200 μm. No apoptosis was observed in the control group, but numerous apoptotic cells, mainly BMECs,
were observed in the SAP group. Fewer apoptotic cells were observed in the SAP+MSCs group than in the
SAP group. b Statistical analysis of TUNEL-positive cells. ***p < 0.001
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damaged [30] and claudin-5 expression was downregulated [31, 32] under inflamma-

tory conditions in vitro and in vivo, resulting in increased BBB permeability. In this

study, the results of our immunohistochemistry, quantitative real-time PCR and west-

ern blotting assays show a significant decrease in claudin-5 expression in the brains of

SAP rats compared to that in the controls. These results are in accordance with previ-

ous studies that indicated that the downregulation of claudin-5 might contribute to the

loss of integrity of the BBB.

Third, the upregulation of MMP-9 expression may contribute to BBB impair-

ment. The expression of MMP-9 is usually upregulated in inflammatory conditions

or in ischemia–hypoxia situations. It has been reported that MMP-9 induces the

structural disruption of paracellular tight junctions, leading to BBB impairment in

vitro [33]. Studies also showed that MMP-9 induces the degradation of collagen

component [34, 35] and the downregulation of tight junction proteins [8], with in-

creased BBB permeability under inflammatory conditions in vivo. Interestingly, our

western blotting results show a noticeably increased expression level of MMP-9 in

the brains of SAP rats. Thus, the upregulation of MMP-9 expression is also an im-

portant cause of the impairment of the BBB in SAP.

MSCs have been widely studied in many areas because of their pleiotropic abil-

ities, such as multipotential differentiation, low immunogenicity and paracrine

function. It has been reported that MSCs can migrate to damaged tissue and se-

crete trophic factors [36, 37], including cytokines and growth factors, or differenti-

ate into functional local cells to promote tissue repair. MSCs have also been

investigated for immunomodulatory abilities resulting from their secretion of vari-

ous anti-inflammatory molecules [38]. MSC transplantation has been studied in

several digestive diseases, in both animal models [39] and clinical trials [40]. Many

studies have investigated the therapeutic effects of MSCs on acute pancreatitis

Fig. 6 MSCs upregulated Bcl-2 expression and downregulated Bax expression in the brains of SAP rats. a (i)
Representative western blotting images of Bcl-2 and Bax protein expression in the brains of SAP rats. (ii)
Statistical analysis of Bcl-2 protein expression based on a western blotting assay. (iii) Statistical analysis of
Bax protein expression based on a western blotting assay. b (i) Results of a quantitative PCR assay for Bcl-2
gene expression in the brains of SAP rats. (ii) Results of a quantitative PCR assay for Bax gene expression in
the brains of SAP rats. *p < 0.05, **p < 0.01
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[41–43], but only a few studies have focused on brain damage and investigated the

underlying mechanisms.

In this study, we found that MSCs protected the BBB, decreasing its permeability

in SAP rats. We explored the underlying mechanisms of MSC protective effects on

the BBB and came to the following conclusions.

First, the use of MSCs in SAP rats decreases the serum levels of amylase and

TNF-α and increases the serum level of IL-10, thereby alleviating pancreatic im-

pairment. The serum amylase and TNF-α levels decreased after MSC treatment in

this study, which was in accordance with the results of previous studies [11]. De-

creased amylase and TNF-α levels attenuate the severity of the systemic inflamma-

tion, pancreatic impairment and the injury or apoptosis of BMECs. IL-10 is a well-

known anti-inflammatory cytokine with strong immunomodulatory and anti-

apoptotic abilities.

Second, MSCs reduce BMEC apoptosis levels. TUNEL staining showed that there

were fewer apoptotic BMECs in SAP rats after MSC treatment. This result might

mainly be attributed to the decreased serum levels of inflammatory cytokines, including

TNF-α, and the increased serum IL-10 level, which was in line with a previous study

[44]. It has been reported that IL-10 has anti-apoptotic effects on endothelial cells dur-

ing inflammatory situations [45]. Consequently, the increased serum IL-10 levels might

contribute to the anti-apoptotic effects of MSCs. In our study, the expression of Bax

decreased and the expression of Bcl-2 increased in the brains of SAP rats that were

treated with MSCs, indicating that MSCs have antiapoptotic effects in SAP.

Third, MSCs increase the expression level of claudin-5 in SAP rats. The results of im-

munohistochemistry, quantitative real-time PCR and western blotting assays show that

MSCs increases claudin-5 expression in the brains of SAP rats, and supports the main-

tenance of BBB integrity. This result might be mainly attributed to the reduced apop-

tosis of BMECs in SAP rats treated with MSCs, resulting in the increased transcription

and translation of claudin-5.

Fourth, MSCs decrease the expression level of MMP-9 in SAP rats. The upregulation

of MMP-9 expression is associated with increased BBB permeability, as mentioned

above. The results of western blotting assays showed that the expression of MMP-9

was downregulated by MSCs in SAP rats. This result may be due to an MSC-mediated

decrease in the serum levels of inflammatory cytokines because the transcription and

Fig. 7 MSCs attenuated the upregulation of MMP-9 in the brains of SAP rats. a Representative western
blotting image of the MMP-9 protein expression in the brains of SAP rats. b Statistical analysis of the MMP-9
protein expression based on a western blotting assay. *p < 0.05

Lin et al. Cellular & Molecular Biology Letters           (2019) 24:43 Page 11 of 14



translation of MMP-9 are often initiated by inflammatory cytokines during inflamma-

tory situations [46].

The method of MSCs infusion, including intravenous and intraarterial infusion might

exert different effects on the BBB in SAP rats. Intraarterial infusion of MSCs increases

the local presence of MSCs in cerebral circulation, but is more difficult than intraven-

ous infusion and has higher risks of microvascular embolization. However, MSCs can-

not migrate through the BBB due to their large size and the barrier properties.

Therefore, the protective effects of MSCs on the BBB in SAP rats might be mainly at-

tributed to the immunomodulatory and paracrine functions of MSCs. Notably, MSC-

derived exosomes are also currently a research focus in cell-free regenerative medicine

due to them having similar biological effects but without the ethical issues of cell trans-

plantation. Additional research that further explores the underlying molecular mecha-

nisms will be required in the future.

Conclusions
We found that in SAP rats, increased levels of amylase and inflammatory cytokines,

BMEC apoptosis, downregulation of claudin-5 and upregulation of MMP-9 might be

the main mechanisms driving the impairment of the BBB, including increased perme-

ability. However, MSCs attenuated the severity of systematic inflammation and pancre-

atic impairment, reduced BMEC apoptosis, upregulated claudin-5 and downregulated

MMP-9, decreasing BBB permeability in SAP rats.
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